nips nips2003 nips2003-160 nips2003-160-reference knowledge-graph by maker-knowledge-mining
Source: pdf
Author: Jan Eichhorn, Andreas Tolias, Alexander Zien, Malte Kuss, Jason Weston, Nikos Logothetis, Bernhard Schölkopf, Carl E. Rasmussen
Abstract: We report and compare the performance of different learning algorithms based on data from cortical recordings. The task is to predict the orientation of visual stimuli from the activity of a population of simultaneously recorded neurons. We compare several ways of improving the coding of the input (i.e., the spike data) as well as of the output (i.e., the orientation), and report the results obtained using different kernel algorithms. 1
[1] P. F¨ ldi´ k. The ”ideal humunculus”: statistical inference from neural population responses. In o a F. Eeckman and J. Bower, editors, Computation and Neural Systems 1992, Norwell, MA, 1993. Kluwer.
[2] A. S. Tolias, A. G. Siapas, S. M. Smirnakis and N. K. Logothetis. Coding visual information at the level of populations of neurons. Soc. Neurosci. Abst. 28, 2002.
[3] A. P. Georgopoulos, A. B. Schwartz and R. E. Kettner. Neuronal population coding of movement direction. Science, 233(4771):1416–1419, 1986.
[4] T. D. Sanger. Probability density estimation for the interpretation of neural population codes. J Neurophysiol., 76(4):2790–2793, 1996.
[5] K. Zhang, I. Ginzburg, B. L. McNaughton and T. J. Sejnowski. Interpreting neuronal population activity by reconstruction: unified framework with application to hippocampal place cells. J Neurophysiol., 79(2):1017–1044, 1998.
[6] L. Shpigelman, Y. Singer, R. Paz and E. Vaadia. Spikernels: embedding spike neurons in innerproduct spaces. In S. Becker, S. Thrun and K. Obermayer, editors, Advances in Neural Information Processing Systems 15, 2003. ¨
[7] J. Weston, O. Chapelle, A. Elisseeff, B. Scholkopf and V. Vapnik. Kernel dependency estimation. In S. Becker, S. Thrun and K. Obermayer, editors, Advances in Neural Information Processing Systems 15, 2003.
[8] B. Sch¨ lkopf and A. J. Smola. Learning with Kernels. The MIT Press, Cambridge, Maso sachusetts, 2002.
[9] C. K. I. Williams and C. E. Rasmussen. Gaussian processes for regression. In D. S. Touretzky, M. C. Mozer and M. E. Hasselmo, editors, Advances in Neural Information Processing Systems 8, 1996.
[10] S. B. Needleman and C. D. Wunsch. A General Method Applicable to the Search for Similarities in the Amino Acid Sequence of Two Proteins. Journal of Molecular Biology, 48:443–453, 1970.
[11] J. D. Victor and K. P. Purpura. Nature and precision of temporal coding in visual cortex: a metric-space analysis. J Neurophysiol, 76(2):1310–1326, 1996.
[12] V. N. Vapnik. Statistical Learning Theory. John Wiley & Sons, New York, 1998.