nips nips2003 nips2003-1 nips2003-1-reference knowledge-graph by maker-knowledge-mining

1 nips-2003-1-norm Support Vector Machines


Source: pdf

Author: Ji Zhu, Saharon Rosset, Robert Tibshirani, Trevor J. Hastie

Abstract: The standard 2-norm SVM is known for its good performance in twoclass classi£cation. In this paper, we consider the 1-norm SVM. We argue that the 1-norm SVM may have some advantage over the standard 2-norm SVM, especially when there are redundant noise features. We also propose an ef£cient algorithm that computes the whole solution path of the 1-norm SVM, hence facilitates adaptive selection of the tuning parameter for the 1-norm SVM. 1


reference text

[1] Bradley, P. & Mangasarian, O. (1998) Feature selection via concave minimization and support vector machines. In J. Shavlik (eds), ICML’98. Morgan Kaufmann.

[2] Evgeniou, T., Pontil, M. & Poggio., T. (1999) Regularization networks and support vector machines. Advances in Large Margin Classi£ers. MIT Press.

[3] Friedman, J., Hastie, T, Rosset, S, Tibshirani, R. & Zhu, J. (2004) Discussion of “Consistency in boosting” by W. Jiang, G. Lugosi, N. Vayatis and T. Zhang. Annals of Statistics. To appear.

[4] Golub,T., Slonim,D., Tamayo,P., Huard,C., Gaasenbeek,M., Mesirov,J., Coller,H., Loh,M., Downing,J. & Caligiuri,M. (1999) Molecular classi£cation of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531-536.

[5] Guyon,I., Weston,J., Barnhill,S. & Vapnik,V. (2002) Gene selection for cancer classi£cation using support vector machines. Machine Learning 46, 389-422.

[6] Hastie, T., Tibshirani, R. & Friedman, J. (2001) The Elements of Statistical Learning. SpringerVerlag, New York.

[7] Mukherjee, S., Tamayo,P., Slonim,D., Verri,A., Golub,T., Mesirov,J. & Poggio, T. (1999) Support vector machine classi£cation of microarray data. Technical Report AI Memo 1677, MIT.

[8] Rosset, S., Zhu, J. & Hastie, T. (2003) Boosting as a regularized path to a maximum margin classi£er. Technical Report, Department of Statistics, Stanford University, CA.

[9] Song, M., Breneman, C., Bi, J., Sukumar, N., Bennett, K., Cramer, S. & Tugcu, N. (2002) Prediction of protein retention times in anion-exchange chromatography systems using support vector regression. Journal of Chemical Information and Computer Sciences, September.

[10] Tibshirani, R. (1996) Regression shrinkage and selection via the lasso. J.R.S.S.B. 58, 267-288.

[11] Vapnik, V. (1995) Tha Nature of Statistical Learning Theory. Springer-Verlag, New York.

[12] Wahba, G. (1999) Support vector machine, reproducing kernel Hilbert spaces and the randomized GACV. Advances in Kernel Methods - Support Vector Learning, 69-88, MIT Press.

[13] Zhu, J. (2003) Flexible statistical modeling. Ph.D. Thesis. Stanford University.

[14] Zhu, J. & Hastie, T. (2003) Classi£cation of gene microarrays by penalized logistic regression. Biostatistics. Accepted.