nips nips2002 nips2002-154 nips2002-154-reference knowledge-graph by maker-knowledge-mining
Source: pdf
Author: Giacomo Indiveri
Abstract: We present analog neuromorphic circuits for implementing bistable synapses with spike-timing-dependent plasticity (STDP) properties. In these types of synapses, the short-term dynamics of the synaptic efficacies are governed by the relative timing of the pre- and post-synaptic spikes, while on long time scales the efficacies tend asymptotically to either a potentiated state or to a depressed one. We fabricated a prototype VLSI chip containing a network of integrate and fire neurons interconnected via bistable STDP synapses. Test results from this chip demonstrate the synapse’s STDP learning properties, and its long-term bistable characteristics.
[1] L. F. Abbott and S. Song. Asymmetric hebbian learning, spike liming and neural response variability. In Advances in Neural Information Processing Systems, volume 11, pages 69–75, 1998.
[2] D. J. Amit and S. Fusi. Dynamic learning in neural networks with material synapses. Neural Computation, 6:957, 1994.
[3] T. V. P. Bliss and G. L. Collingridge. A synaptic model of memory: Long term potentiation in the hippocampus. Nature, 31:361, 1993.
[4] A. Bofill and A.F. Murray. Circuits for VLSI implementation of temporally asymmetric Hebbian learning. In T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information processing systems, volume 14. MIT Press, Cambridge, MA, 2001.
[5] C. Diorio, P. Hasler, B.A. Minch, and C. Mead. A single-transistor silicon synapse. IEEE Trans. Electron Devices, 43(11):1972–1980, 1996.
[6] S. Fusi, M. Annunziato, D. Badoni, A. Salamon, and D.J. Amit. Spike-driven synaptic plasticity: theory, simulation, VLSI implementation. Neural Computation, 12:2227–2258, 2000.
[7] P. H¨ fliger, M. Mahowald, and L. Watts. A spike based learning neuron in analog VLSI. In a M. C. Mozer, M. I. Jordan, and T. Petsche, editors, Advances in neuralinformation processing systems, volume 9, pages 692–698. MIT Press, 1997.
[8] G. Indiveri. Modeling selective attention using a neuromorphic analog VLSI device. Neural Computation, 12(12):2857–2880, December 2000.
[9] G. Indiveri. A low-power adaptive integrate-and-fire neuron circuit. In ISCAS 2003. The 2003 IEEE International Symposium on Circuits and Systems, 2003. IEEE, 2003.
[10] T. Kohonen. Self-Organization and Associative Memory. Springer Series in Information Sciences. Springer Verlag, 2nd edition, 1988.
[11] S.-C. Liu, M. Boegerhausen, and S. Pascal. Circuit model of short-term synaptic dynamics. In Advances in Neural Information Processing Systems, volume 15, Cambridge, MA, December 2002. MIT Press.
[12] S.-C. Liu, J. Kramer, G. Indiveri, T. Delbruck, T. Burg, and R. Douglas. Orientation-selective aVLSI spiking neurons. Neural Networks, 14(6/7):629–643, 2001. Special Issue on Spiking Neurons in Neuroscience and Technology.
[13] S.-C. Liu, J. Kramer, G. Indiveri, T. Delbruck, and R. Douglas. Analog VLSI:Circuits and Principles. MIT Press, 2002.
[14] H. Markram, J. L¨ bke, M. Frotscher, and B. Sakmann. Regulation of synaptic efficacy by u coincidence of postsynaptic APs and EPSPs. Science, 275:213–215, 1997.
[15] C. C. H. Petersen, R. C. Malenka, R. A. Nicoll, and J. J. Hopfield. All-ornone potentiation at CA3-CA1 synapses. Proc. Natl. Acad. Sci., 95:4732, 1998.
[16] S. Song, K. D. Miller, and L. F. Abbot. Competitive Hebbian learning through spike-timingdependent plasticity. Nature Neuroscience, 3(9):919–926, 2000.