nips nips2002 nips2002-50 nips2002-50-reference knowledge-graph by maker-knowledge-mining

50 nips-2002-Circuit Model of Short-Term Synaptic Dynamics


Source: pdf

Author: Shih-Chii Liu, Malte Boegershausen, Pascal Suter

Abstract: We describe a model of short-term synaptic depression that is derived from a silicon circuit implementation. The dynamics of this circuit model are similar to the dynamics of some present theoretical models of shortterm depression except that the recovery dynamics of the variable describing the depression is nonlinear and it also depends on the presynaptic frequency. The equations describing the steady-state and transient responses of this synaptic model fit the experimental results obtained from a fabricated silicon network consisting of leaky integrate-and-fire neurons and different types of synapses. We also show experimental data demonstrating the possible computational roles of depression. One possible role of a depressing synapse is that the input can quickly bring the neuron up to threshold when the membrane potential is close to the resting potential.


reference text

[Abbott et al., 1997] Abbott, L., Sen, K., Varela, J., and Nelson, S. (1997). Synaptic depression and cortical gain control. Science, 275(5297):220–223. [Boahen, 1997] Boahen, K. A. (1997). Retinomorphic Vision Systems: Reverse Engineering the Vertebrate Retina. PhD thesis, California Institute of Technology, Pasadena CA. [Chance et al., 1998] Chance, F., Nelson, S., and Abbott, L. (1998). Synaptic depression and the temporal response characteristics of V1 cells. Journal of Neuroscience, 18(12):4785–4799. [Indiveri, 2000] Indiveri, G. (2000). Modeling selective attention using a neuromorphic aVLSI device. Neural Computation, 12(12):2857–2880. [Liu, 2002] Liu, S.-C. (2002). Dynamic synapses and neuron circuits for mixed-signal processing. EURASIP Journal on Applied Signal Processing: Special Issue. Submitted. [Liu et al., 2001] Liu, S.-C., Kramer, J., Indiveri, G., Delbr¨ ck, T., Burg, T., and Douglas, u R. (2001). Orientation-selective aVLSI spiking neurons. Neural Networks: Special Issue on Spiking Neurons in Neuroscience and Technology, 14(6/7):629–643. [Maass and Zador, 1999] Maass, W. and Zador, A. (1999). Computing and learning with dynamic synapses. In Maass, W. and Bishop, C. M., editors, Pulsed Neural Networks, chapter 6, pages 157–178. MIT Press, Boston, MA. ISBN 0-262-13350-4. [Matveev and Wang, 2000] Matveev, V. and Wang, X. (2000). Differential short-term synaptic plasticity and transmission of complex spike trains: to depress or to facilitate? Cerebral Cortex, 10(11):1143–1153. [Rasche and Hahnloser, 2001] Rasche, C. and Hahnloser, R. (2001). Silicon synaptic depression. Biological Cybernetics, 84(1):57–62. [Senn et al., 1998] Senn, W., Segev, I., and Tsodyks, M. (1998). Reading neuronal synchrony with depressing synapses. Neural Computation, 10(4):815–819. [Stratford et al., 1998] Stratford, K., Tarczy-Hornoch, K., Martin, K., Bannister, N., and Jack, J. (1998). Excitatory synaptic inputs to spiny stellate cells in cat visual cortex. Nature, 382:258–261. [Tsodyks and Markram, 1997] Tsodyks, M. and Markram, H. (1997). The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc. Natl. Acad. Sci. USA, 94(2). [Tsodyks et al., 1998] Tsodyks, M., Pawelzik, K., and Markram, H. (1998). Neural networks with dynamic synapses. Neural Computation, 10(4):821–835. [Van Schaik, 2001] Van Schaik, A. (2001). Building blocks for electronic spiking neural networks. Neural Networks, 14(6/7):617–628. Special Issue on Spiking Neurons in Neuroscience and Technology. [Varela et al., 1997] Varela, J., Sen, K., Gibson, J., Fost, J., Abbott, L., and Nelson, S. (1997). A quantitative description of short-term plasticity at excitatory synapses in layer 2/3 of rat primary visual cortex. Journal of Neuroscience, 17(20):7926–7940.