nips nips2001 nips2001-135 nips2001-135-reference knowledge-graph by maker-knowledge-mining

135 nips-2001-On Spectral Clustering: Analysis and an algorithm


Source: pdf

Author: Andrew Y. Ng, Michael I. Jordan, Yair Weiss

Abstract: Despite many empirical successes of spectral clustering methodsalgorithms that cluster points using eigenvectors of matrices derived from the data- there are several unresolved issues. First, there are a wide variety of algorithms that use the eigenvectors in slightly different ways. Second, many of these algorithms have no proof that they will actually compute a reasonable clustering. In this paper, we present a simple spectral clustering algorithm that can be implemented using a few lines of Matlab. Using tools from matrix perturbation theory, we analyze the algorithm, and give conditions under which it can be expected to do well. We also show surprisingly good experimental results on a number of challenging clustering problems. 1


reference text