nips nips2001 nips2001-131 nips2001-131-reference knowledge-graph by maker-knowledge-mining

131 nips-2001-Neural Implementation of Bayesian Inference in Population Codes


Source: pdf

Author: Si Wu, Shun-ichi Amari

Abstract: This study investigates a population decoding paradigm, in which the estimation of stimulus in the previous step is used as prior knowledge for consecutive decoding. We analyze the decoding accuracy of such a Bayesian decoder (Maximum a Posteriori Estimate), and show that it can be implemented by a biologically plausible recurrent network, where the prior knowledge of stimulus is conveyed by the change in recurrent interactions as a result of Hebbian learning. 1


reference text

[1] A. Pouget , P. Dayan & R. Zemel. Nature Reviews Neurosci ence, 1, 125-132, 2000.

[2] B. Olshausen & D. Field. Nature, 381, 607-609, 1996.

[3] T. Poggio & F . Girosi. Neural Computation, 10, 1445-1454, 1998.

[4] A. Pouget & K. Zhang. NIPS, 9 , 1997.

[5] S. Deneve, P. E. Latham & A. Pouget. Nature N euroscience, 2, 740-745, 1999.

[6] K. Zhang, 1. Ginzburg, B. McNaughton & T. Sejnowski. J. Neurophysiol., 79 , 10171044, 1998.

[7] S. Wu, H. Nakahara & S. Amari. Neural Computation, 13, 775-798 , 200l.

[8] S. Wu, S. Amari & H. Nakahara. CNS*Ol (to appear).

[9] S. Wu, S. Amari & H. Nakahara. N eural Computation (in press).

[10] S. Amari. Biological Cybernetics, 27, 77-87, 1977.

[11] K. Zhang. J. Neurosci., 16, 2112-2126, 1996.

[12] H . Seung. Proc. Natl. Acad. Sci . USA , 93 , 13339-13344, 1996.