nips nips2001 nips2001-86 nips2001-86-reference knowledge-graph by maker-knowledge-mining

86 nips-2001-Grammatical Bigrams


Source: pdf

Author: Mark A. Paskin

Abstract: Unsupervised learning algorithms have been derived for several statistical models of English grammar, but their computational complexity makes applying them to large data sets intractable. This paper presents a probabilistic model of English grammar that is much simpler than conventional models, but which admits an efficient EM training algorithm. The model is based upon grammatical bigrams, i.e. , syntactic relationships between pairs of words. We present the results of experiments that quantify the representational adequacy of the grammatical bigram model, its ability to generalize from labelled data, and its ability to induce syntactic structure from large amounts of raw text. 1


reference text