nips nips2001 nips2001-74 nips2001-74-reference knowledge-graph by maker-knowledge-mining

74 nips-2001-Face Recognition Using Kernel Methods


Source: pdf

Author: Ming-Hsuan Yang

Abstract: Principal Component Analysis and Fisher Linear Discriminant methods have demonstrated their success in face detection, recognition, and tracking. The representation in these subspace methods is based on second order statistics of the image set, and does not address higher order statistical dependencies such as the relationships among three or more pixels. Recently Higher Order Statistics and Independent Component Analysis (ICA) have been used as informative low dimensional representations for visual recognition. In this paper, we investigate the use of Kernel Principal Component Analysis and Kernel Fisher Linear Discriminant for learning low dimensional representations for face recognition, which we call Kernel Eigenface and Kernel Fisherface methods. While Eigenface and Fisherface methods aim to find projection directions based on the second order correlation of samples, Kernel Eigenface and Kernel Fisherface methods provide generalizations which take higher order correlations into account. We compare the performance of kernel methods with Eigenface, Fisherface and ICA-based methods for face recognition with variation in pose, scale, lighting and expression. Experimental results show that kernel methods provide better representations and achieve lower error rates for face recognition. 1 Motivation and Approach Subspace methods have been applied successfully in numerous visual recognition tasks such as face localization, face recognition, 3D object recognition, and tracking. In particular, Principal Component Analysis (PCA) [20] [13] ,and Fisher Linear Discriminant (FLD) methods [6] have been applied to face recognition with impressive results. While PCA aims to extract a subspace in which the variance is maximized (or the reconstruction error is minimized), some unwanted variations (due to lighting, facial expressions, viewing points, etc.) may be retained (See [8] for examples). It has been observed that in face recognition the variations between the images of the same face due to illumination and viewing direction are almost always larger than image variations due to the changes in face identity [1]. Therefore, while the PCA projections are optimal in a correlation sense (or for reconstruction


reference text