nips nips2001 nips2001-50 nips2001-50-reference knowledge-graph by maker-knowledge-mining

50 nips-2001-Classifying Single Trial EEG: Towards Brain Computer Interfacing


Source: pdf

Author: Benjamin Blankertz, Gabriel Curio, Klaus-Robert Müller

Abstract: Driven by the progress in the field of single-trial analysis of EEG, there is a growing interest in brain computer interfaces (BCIs), i.e., systems that enable human subjects to control a computer only by means of their brain signals. In a pseudo-online simulation our BCI detects upcoming finger movements in a natural keyboard typing condition and predicts their laterality. This can be done on average 100–230 ms before the respective key is actually pressed, i.e., long before the onset of EMG. Our approach is appealing for its short response time and high classification accuracy (>96%) in a binary decision where no human training is involved. We compare discriminative classifiers like Support Vector Machines (SVMs) and different variants of Fisher Discriminant that possess favorable regularization properties for dealing with high noise cases (inter-trial variablity).


reference text

[1] J. J. Vidal, “Toward direct brain-computer communication”, Annu. Rev. Biophys., 2: 157–180, 1973.

[2] N. Birbaumer, N. Ghanayim, T. Hinterberger, I. Iversen, B. Kotchoubey, A. Kübler, J. Perelmouter, E. Taub, and H. Flor, “A spelling device for the paralysed”, Nature, 398: 297–298, 1999.

[3] B. O. Peters, G. Pfurtscheller, and H. Flyvbjerg, “Automatic Differentiation of Multichannel EEG Signals”, IEEE Trans. Biomed. Eng., 48(1): 111–116, 2001.

[4] J. R. Wolpaw, D. J. McFarland, and T. M. Vaughan, “Brain-Computer Interface Research at the Wadsworth Center”, IEEE Trans. Rehab. Eng., 8(2): 222–226, 2000.

[5] W. D. Penny, S. J. Roberts, E. A. Curran, and M. J. Stokes, “EEG-based cummunication: a pattern recognition approach”, IEEE Trans. Rehab. Eng., 8(2): 214–215, 2000.

[6] J. D. Bayliss and D. H. Ballard, “Recognizing Evoked Potentials in a Virtual Environment”, in: S. A. Solla, T. K. Leen, and K.-R. Müller, eds., Advances in Neural Information Processing Systems, vol. 12, 3–9, MIT Press, 2000.

[7] S. Makeig, S. Enghoff, T.-P. Jung, and T. J. Sejnowski, “A Natural Basis for Efficient BrainActuated Control”, IEEE Trans. Rehab. Eng., 8(2): 208–211, 2000.

[8] W. Lang, O. Zilch, C. Koska, G. Lindinger, and L. Deecke, “Negative cortical DC shifts preceding and accompanying simple and complex sequential movements”, Exp. Brain Res., 74(1): 99–104, 1989.

[9] R. Q. Cui, D. Huter, W. Lang, and L. Deecke, “Neuroimage of voluntary movement: topography of the Bereitschaftspotential, a 64-channel DC current source density study”, Neuroimage, 9(1): 124–134, 1999.

[10] R. Beisteiner, P. Hollinger, G. Lindinger, W. Lang, and A. Berthoz, “Mental representations of movements. Brain potentials associated with imagination of hand movements”, Electroencephalogr. Clin. Neurophysiol., 96(2): 183–193, 1995.

[11] K. P. Bennett and O. L. Mangasarian, “Robust Linear Programming Discrimination of two Linearly Inseparable Sets”, Optimization Methods and Software, 1: 23–34, 1992.

[12] G. Rätsch, T. Onoda, and K.-R. Müller, “Soft Margins for AdaBoost”, 42(3): 287–320, 2001.

[13] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, Wiley & Sons, 2nd edn., 2001.

[14] S. Mika, G. Rätsch, and K.-R. Müller, “A mathematical programming approach to the Kernel Fisher algorithm”, in: T. K. Leen, T. G. Dietterich, and V. Tresp, eds., Advances in Neural Information Processing Systems 13, 591–597, MIT Press, 2001. 1 ¤ ¤ ¡ ¡

[15] “ILOG Solver, ILOG CPLEX 6.5 Reference Manual”, , 1999.

[16] V. Vapnik, The nature of statistical learning theory, Springer Verlag, New York, 1995.

[17] K.-R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf, “An Introduction to KernelBased Learning Algorithms”, IEEE Transactions on Neural Networks, 12(2): 181–201, 2001.