nips nips2001 nips2001-27 nips2001-27-reference knowledge-graph by maker-knowledge-mining

27 nips-2001-Activity Driven Adaptive Stochastic Resonance


Source: pdf

Author: Gregor Wenning, Klaus Obermayer

Abstract: Cortical neurons might be considered as threshold elements integrating in parallel many excitatory and inhibitory inputs. Due to the apparent variability of cortical spike trains this yields a strongly fluctuating membrane potential, such that threshold crossings are highly irregular. Here we study how a neuron could maximize its sensitivity w.r.t. a relatively small subset of excitatory input. Weak signals embedded in fluctuations is the natural realm of stochastic resonance. The neuron's response is described in a hazard-function approximation applied to an Ornstein-Uhlenbeck process. We analytically derive an optimality criterium and give a learning rule for the adjustment of the membrane fluctuations, such that the sensitivity is maximal exploiting stochastic resonance. We show that adaptation depends only on quantities that could easily be estimated locally (in space and time) by the neuron. The main results are compared with simulations of a biophysically more realistic neuron model. 1


reference text