nips nips2001 nips2001-15 nips2001-15-reference knowledge-graph by maker-knowledge-mining

15 nips-2001-A New Discriminative Kernel From Probabilistic Models


Source: pdf

Author: Koji Tsuda, Motoaki Kawanabe, Gunnar Rätsch, Sören Sonnenburg, Klaus-Robert Müller

Abstract: Recently, Jaakkola and Haussler proposed a method for constructing kernel functions from probabilistic models. Their so called


reference text

[1] L. Devroye, L. Gyorfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition. Springer , 1996.

[2] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press , 1998.

[3] K. Fukunaga. Introduction to Statistical Pattern Recognition. Academic Press, San Diego, 2nd edition, 1990.

[4] D. Geiger and C. Meek. Graphical models and exponential famili es . Technical Report MSR- TR-98-10, Microsoft Research, 1998.

[5] T.S. Jaakkola, M. Diekhans, and D. Haussler. A discriminative framework for detecting remote protein homologies. J. Compo Biol. , 7:95-114, 2000.

[6] T.S. Jaakkola and D. Haussler. Exploiting generative models in discriminative classifiers. In M.S. Kearns, S.A. SoHa, and D.A. Cohn, editors, Advances in Neural Information Processing Systems 11 , pages 487- 493. MIT Press, 1999.

[7] N. Murata, S. Yoshizawa, and S. Amari. Network information criterion determining the number of hidden units for an artificial neural network model. IEEE Trans. Neural Networks, 5:865- 872, 1994.

[8] N. Smith and M. Gales. Speech recognition using SVMs. In T.G. Dietterich, S. Becker, and Z. Ghahramani , editors, Advances in Neural Information Processing Systems 14. MIT Press, 2002. to appear.