nips nips2000 nips2000-141 nips2000-141-reference knowledge-graph by maker-knowledge-mining
Source: pdf
Author: Elad Schneidman, Naama Brenner, Naftali Tishby, Robert R. de Ruyter van Steveninck, William Bialek
Abstract: The problem of neural coding is to understand how sequences of action potentials (spikes) are related to sensory stimuli, motor outputs, or (ultimately) thoughts and intentions. One clear question is whether the same coding rules are used by different neurons, or by corresponding neurons in different individuals. We present a quantitative formulation of this problem using ideas from information theory, and apply this approach to the analysis of experiments in the fly visual system. We find significant individual differences in the structure of the code, particularly in the way that temporal patterns of spikes are used to convey information beyond that available from variations in spike rate. On the other hand, all the flies in our ensemble exhibit a high coding efficiency, so that every spike carries the same amount of information in all the individuals. Thus the neural code has a quantifiable mixture of individuality and universality. 1
[1] Shannon, C. E. A mathematical theory of communication, Bell Sys. Tech. J. 27, 379- 423 , 623- 656 (1948) .
[2] Cover, T. & Thomas J. Elements of information theory (Wiley, 1991).
[3] Victor, J . D. & Purpura, K. Nature and precision of temporal coding in visual cortex: a metric- space analysis, J. Neurophysiol. 76, 1310- 1326 (1996) .
[4] Hausen, K. The lobular complex of the fly, in Photoreception and vision in invertebrates (ed Ali, M.) pp . 523-559 (Plenum, 1984) .
[5] Bullock, T. Structure and Function in the Nervous Systems of Invertebrates (W. H. Freeman, San Francisco, 1965).
[6] Land, M. F. & Collett, T . S. Chasing behavior of houseflies (Fannia canicularis). A description and analysis, J. Comp o Physiol. 89, 331- 357 (1974) .
[7] de Ruyter van Steveninck, R. R., Lewen, G. D., Strong, S. P., Koberie, R. & W. Bialek, Reproducibility and variability in neural spike trains, Science 275, 1805- 1808, (1997).
[8] Strong, S. P., Koberie, R., de Ruyter van Steveninck, R . & Bialek, W. Entropy and information in neural spike trains , Phys. Rev. Lett. 80, 197- 200 (1998).
[9] Rieke, F., Wariand, D., de Ruyter van Steveninck, R. & Bialek, W. Spikes: Exploring the Neural Code (MIT Press, 1997) .
[10] Brenner, N. , Strong, S. P. , Koberie , R., de Ruyter van Steveninck, R. & Bialek, W . Synergy in a neural code, Neural Comp o 12, 1531- 52 (2000).
[11] Lin, J., Divergence measures based on the Shannon entropy, IEEE Trans. Inf. Theory, 37, 145- 151 (1991) .
[12] El-Yaniv, R., Fine, S. & Tishby, N. Agnostic classification of Markovian sequences, NIPS 10 pp. 465-471 (MIT Press, 1997) .