nips nips2000 nips2000-85 nips2000-85-reference knowledge-graph by maker-knowledge-mining

85 nips-2000-Mixtures of Gaussian Processes


Source: pdf

Author: Volker Tresp

Abstract: We introduce the mixture of Gaussian processes (MGP) model which is useful for applications in which the optimal bandwidth of a map is input dependent. The MGP is derived from the mixture of experts model and can also be used for modeling general conditional probability densities. We discuss how Gaussian processes -in particular in form of Gaussian process classification, the support vector machine and the MGP modelcan be used for quantifying the dependencies in graphical models.


reference text

[1] Jacobs, R. A., Jordan, M. I., Nowlan, S. J., Hinton, J. E. (1991). Adaptive Mixtures of Local Experts, Neural Computation, 3.

[2] Tresp, V. (2000). The Generalized Bayesian Committee Machine. Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD-2000.

[3] Williams, C. K. I., Barber. D. (1998). Bayesian Classification with Gaussian Processes, IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(12).

[4] Fahrmeir, L., Tutz, G. (1994) Multivariate Statistical Modeling Based on Generalized Linear Models, Springer.

[5] Sollich, P. (2000). Probabilistic Methods for Support Vector Machines. In Solla, S. A., Leen, T. K., Miiller, K.-R. (Eds.), Advances in Neural Information Processing Systems 12, MIT Press.

[6] Hofmann R. (2000). Lemen der Struktur nichtlinearer Abhiingingkeiten mit graphischen Modellen. PhD Dissertation.

[7] Hofmann, R., Tresp, V. (1998). Nonlinear Markov Networks for Continuous Variables. In Jordan, M. I., Kearns, M. S., Solla, S. A., (Eds.), Advances in Neural Information Processing Systems 10, MIT Press.

[8] Heckerman, D. , Chickering, D., Meek, c., Rounthwaite, R., Kadie C. (2000). Dependency Networks for Inference, Collaborative Filtering, and Data Visualization .. Journal of Machine Learning Research, 1.

[9] Friedman, N., Nachman, I. (2000). Gaussian Process Networks. In Boutilier, C., Goldszmidt, M., (Eds.), Proc. Sixteenth Conf. on Uncertainty in Artificial Intelligence (UAl).