nips nips2000 nips2000-35 nips2000-35-reference knowledge-graph by maker-knowledge-mining

35 nips-2000-Computing with Finite and Infinite Networks


Source: pdf

Author: Ole Winther

Abstract: Using statistical mechanics results, I calculate learning curves (average generalization error) for Gaussian processes (GPs) and Bayesian neural networks (NNs) used for regression. Applying the results to learning a teacher defined by a two-layer network, I can directly compare GP and Bayesian NN learning. I find that a GP in general requires CJ (d S )-training examples to learn input features of order s (d is the input dimension), whereas a NN can learn the task with order the number of adjustable weights training examples. Since a GP can be considered as an infinite NN, the results show that even in the Bayesian approach, it is important to limit the complexity of the learning machine. The theoretical findings are confirmed in simulations with analytical GP learning and a NN mean field algorithm.


reference text