jmlr jmlr2012 jmlr2012-31 jmlr2012-31-reference knowledge-graph by maker-knowledge-mining

31 jmlr-2012-DEAP: Evolutionary Algorithms Made Easy


Source: pdf

Author: Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner, Marc Parizeau, Christian Gagné

Abstract: DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. Its design departs from most other existing frameworks in that it seeks to make algorithms explicit and data structures transparent, as opposed to the more common black-box frameworks. Freely available with extensive documentation at http://deap.gel.ulaval.ca, DEAP is an open source project under an LGPL license. Keywords: distributed evolutionary algorithms, software tools


reference text

W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone. Genetic Programming: An Introduction. Morgan Kaufmann, 1998. H.-G. Beyer and H.-P. Schwefel. Evolution strategies: A comprehensive introduction. Natural Computing, 1:3–52, 2002. Y. Collette, N. Hansen, G. Pujol, D. Salazar Aponte, and R. Le Riche. On object-oriented programming of optimizers – Examples in Scilab. In P. Breitkopf and R. F. Coelho, editors, Multidisciplinary Design Optimization in Computational Mechanics, chapter 14, pages 527–565. Wiley, 2010. K. Deb, A. Pratab, S. Agarwal, and T. Meyarivan. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. IEEE Transactions on Evolutionary Computation, 6:849–858, April 2002. N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in evolution strategies. Evolutionary Computation, 9(2):159–195, 2001. J. Kennedy and R. C. Eberhart. Swarm Intelligence. Morgan Kaufmann, 2001. M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, 1998. D. Roberts and R. E. Johnson. Evolving frameworks: A pattern language for developing objectoriented frameworks. In Pattern Languages of Program Design 3. Addison Wesley, 1997. 2175