jmlr jmlr2010 jmlr2010-101 jmlr2010-101-reference knowledge-graph by maker-knowledge-mining

101 jmlr-2010-Second-Order Bilinear Discriminant Analysis


Source: pdf

Author: Christoforos Christoforou, Robert Haralick, Paul Sajda, Lucas C. Parra

Abstract: Traditional analysis methods for single-trial classification of electro-encephalography (EEG) focus on two types of paradigms: phase-locked methods, in which the amplitude of the signal is used as the feature for classification, that is, event related potentials; and second-order methods, in which the feature of interest is the power of the signal, that is, event related (de)synchronization. The process of deciding which paradigm to use is ad hoc and is driven by assumptions regarding the underlying neural generators. Here we propose a method that provides an unified framework for the analysis of EEG, combining first and second-order spatial and temporal features based on a bilinear model. Evaluation of the proposed method on simulated data shows that the technique outperforms state-of-the art techniques for single-trial classification for a broad range of signal-to-noise ratios. Evaluations on human EEG—including one benchmark data set from the Brain Computer Interface (BCI) competition—show statistically significant gains in classification accuracy, with a reduction in overall classification error from 26%-28% to 19%. Keywords: regularization, classification, bilinear decomposition, neural signals, brain computer interface


reference text

N. Birbaumer, N. Ghanayim, T. Hinterberger, I. Iversen, B. Kotchoubey, A. Kubler, J. Perelmouter, E. Taub, and H. Flor. A spelling device for the paralysed. Nature, 398(6725):297–8, Mar FebruaryMay 1999. B. Blankertz, G. Curio, and K. M¨ ller. Classifying single trial EEG: Towards brain computer interu facing. In T. G. Diettrich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing Systems 14. MIT Press, 2002., 2002. B. Blankertz, G. Dornhege, C. Schfer, R. Krepki, J. Kohlmorgen, K. M¨ ller, V. Kunzmann, F. Losch, u and G. Curio. Boosting bit rates and error detection for the classification of fast-paced motor commands based on single-trial EEG analysis. IEEE Trans. Neural Sys. Rehab. Eng., 11(2): 127–131, 2003. B. Blankertz, K.-R. M¨ ller, G. Curio, T.M. Vaughan, G. Schalk, J.R. Wolpaw, A. Schlogl, C. Neu uper, G. Pfurtscheller, T. Hinterberger, M. Schroder, and N. Birbaumer. The bci competition 2003: progress and perspectives in detection and discrimination of EEG single trials. Biomedical Engineering, IEEE Transactions on, 51(6):1044–1051, 2004. G. Dornhege, Blankertz B, and K.R. Krauledat M. Losch F. Curio G.M¨ ller. Combined optimization u of spatial and temporal filters for improving brain-computer interfacing. IEEE Trans. Biomed. Eng. 2006, 2006. M. Dyrholm and L.C. Parra. Smooth bilinear classification of EEG. In In Proc. 28th Annu. Int Conf. IEEE Engineering in Medicine and Biology Society, 2006. M. Dyrholm, C. Christoforou, and L.C. Parra. Bilinear discriminant component analysis. J. Mach. Learn. Res., 8:1097–1111, 2007. ISSN 1533-7928. C.A. Floudas. Deterministic global optimization in design, control, and computational chemistry. In Proceedings: Large Scale Optimization with Applications. Part III: Optimal Design and Control, (L.T. Biegler, A. Conn, L. Coleman, and F. Santosa, Editors), pages 129–184, 1997. 683 C HRISTOFOROU , H ARALICK , S AJDA AND PARRA A.D. Gerson, L.C. Parra, and P. Sajda. Cortically-coupled computer vision for rapid image search. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 14:174–179, June 2006. MEGIS Software GmbH. BESA. http://www.besa.de/products/besa/, 2006. S. Lemm, B. Blankertz, G. Curio, and K. M¨ ller. Spatio-spectral filters for improving the classifiu cation of single trial EEG. IEEE Trans Biomed Eng., 52(9):1541–8, 2005., 2005. A. Luo and P. Sajda. Learning discrimination trajectories in EEG sensor space: Application to inferring task difficulty. J. Neural Eng., 3:L1–L6, 2006a. A. Luo and P. Sajda. Using single-trial EEG to estimate the timing of target onset during rapid serial visual presentation. In Proc. Engineering in Medicine and Biology Society(EMBC2006), 2006b. H. B. Nielsen. IMMOPTIBOX. General optimization http://www.imm.dtu.dk/ hbn/immoptibox/, 2005. software available at L. Parra, C. Alvino, A. Tang, B. Pearlmutter, N. Young, A. Osman, and P. Sajda. Linear spatial integration for single-trial detection in encephalogra phy. Neuroimage, 17:223–230, 2002. L.C. Parra, C.D. Spence, A.D Gerson, and P. Sajda. Recipes for the linear analysis of EEG. Neuroimage, 28(2):326–341, November 2005. ISSN 1053-8119. L.C. Parra, C. Christoforou, A.D. Gerson, M. Dyrholm, A. Luo, M. Wagner, M.G. Philiastides, and P. Sajda. Spatiotemporal linear decoding of brain state: Application to performance augmentation in high-throughput tasks. IEEE, Signal Processing Magazine, January 2008. W. D. Penny, N. J. Trujillo-Barreto, and K. J. Friston. Bayesian fMRI time series analysis with spatial priors. NeuroImage, 24:350362, 2005. G. Pfurtscheller and F. H. Lopes da Silva. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol, 110(11):1842–1857, November 1999. ISSN 1388-2457. M.G. Philiastides and P. Sajda. Temporal characterization of the neural correlates of perceptual decision making in the human brain. Cerebral Cortex, 16(4), April 2006. M.G. Philiastides, R. Ratcliff, and P. Sajda. Neural representation of task difficulty and decision making during perceptual categorization: A timing diagram. Journal of Neuroscience, 26(35): 8965–8975, August 2006. H. Ramoser, J. M¨ ller-Gerking, and G. Pfurtscheller. Optimal spatial filtering of single trial EEG u during imagined hand movement. IEEE Trans. Rehab. Eng., 8:441–446, December 2000. URL citeseer.ist.psu.edu/ramoser98optimal.html. C.E. Rasmussen and C.K.I. Williams. Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning). The MIT Press, 2005. ISBN 026218253X. R. Tomioka and K. Aihara. Classifying matrices with a spectral regularization. In ICML ’07: Proceedings of the 24th international conference on Machine learning, pages 895–902, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-793-3. doi: http://www.ibis.t.utokyo.ac.jp/ryotat/lrds. 684 S ECOND -O RDER B ILINEAR D ISCRIMINANT A NALYSIS R. Tomioka, K. Aihara, and K. M¨ ller. Logistic regression for single trial EEG classification. u In B. Sch¨ lkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Information Processing o Systems 19, pages 1377–1384. MIT Press, Cambridge, MA, 2007. J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M. Vaughan. Brain-computer interfaces for communication and control. Clin Neurophysiol, 113(6):767–791, June 2002. ISSN 1388-2457. 685