jmlr jmlr2010 jmlr2010-23 jmlr2010-23-reference knowledge-graph by maker-knowledge-mining

23 jmlr-2010-Classification with Incomplete Data Using Dirichlet Process Priors


Source: pdf

Author: Chunping Wang, Xuejun Liao, Lawrence Carin, David B. Dunson

Abstract: A non-parametric hierarchical Bayesian framework is developed for designing a classifier, based on a mixture of simple (linear) classifiers. Each simple classifier is termed a local “expert”, and the number of experts and their construction are manifested via a Dirichlet process formulation. The simple form of the “experts” allows analytical handling of incomplete data. The model is extended to allow simultaneous design of classifiers on multiple data sets, termed multi-task learning, with this also performed non-parametrically via the Dirichlet process. Fast inference is performed using variational Bayesian (VB) analysis, and example results are presented for several data sets. We also perform inference via Gibbs sampling, to which we compare the VB results. Keywords: classification, incomplete data, expert, Dirichlet process, variational Bayesian, multitask learning


reference text