jmlr jmlr2007 jmlr2007-15 jmlr2007-15-reference knowledge-graph by maker-knowledge-mining

15 jmlr-2007-Bilinear Discriminant Component Analysis


Source: pdf

Author: Mads Dyrholm, Christoforos Christoforou, Lucas C. Parra

Abstract: Factor analysis and discriminant analysis are often used as complementary approaches to identify linear components in two dimensional data arrays. For three dimensional arrays, which may organize data in dimensions such as space, time, and trials, the opportunity arises to combine these two approaches. A new method, Bilinear Discriminant Component Analysis (BDCA), is derived and demonstrated in the context of functional brain imaging data for which it seems ideally suited. The work suggests to identify a subspace projection which optimally separates classes while ensuring that each dimension in this space captures an independent contribution to the discrimination. Keywords: bilinear, decomposition, component, classification, regularization


reference text

A. H. Andersen and W. S. Rayens. Structure-seeking multilinear methods for the analysis of fMRI data. Neuroimage, 22(2):728–39, 2004. C.F. Beckmann and S.M. Smith. Tensorial extensions of independent component analysis for group fMRI data analysis. NeuroImage, 25(1):294–311, 2005. A. J. Bell and T. J. Sejnowski. An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 7(6):1129–1159, 1995. C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, Oxford, UK, 1996. 1109 DYRHOLM , C HRISTOFOROU AND PARRA ¨ B. Blankertz, G. Curio, and K.-R. Muller. Classifying single trial EEG: Towards brain computer interfacing. In T. G. Diettrich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Inf. Proc. Systems 14 (NIPS 01), 2002. B. Blankertz, K.-R. M¨ ller, G. Curio, T.M. Vaughan, G. Schalk, J.R. Wolpaw, A. Schlogl, C. Neu uper, G. Pfurtscheller, T. Hinterberger, M. Schroder, and N. Birbaumer. The BCI competition 2003: progress and perspectives in detection and discrimination of EEG single trials. Biomedical Engineering, IEEE Transactions on, 51(6):1044–1051, 2004. R. Bro. Multi-way Analysis in the Food Industry. PhD thesis, Royal Veterinary and Agricultural University, Denmark, 1998. E. T. Bullmore, S. Rabe-Hesketh, R. G. Morris, S. C. Williams, L. Gregory, J. A. Gray, and M. J. Brammer. Functional magnetic resonance image analysis of a large-scale neurocognitive network. Neuroimage, 4(1):16–33, 1996. V. Calhoun, T. Adali, G. Pearlson, and J. Pekar. Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms. Hum Brain Mapp, 13:43, 2001. L. De Lathauwer and J. Vandewalle. Dimensionality reduction in higher-order signal processing and rank-(R1 , R2 , ..., RN ) reduction in multilinear algebra. Lin. Alg. Appl., 391:31–55, 2004. A. Delorme and S. Makeig. Eeglab: an open source toolbox for analysis of single-trial eeg dynamics including independent component analysis. J Neurosci Methods, 134(1):9–21, 2004. M. Dyrholm, S. Makeig, and L. K. Hansen. Model selection for convolutive ICA with an application to spatio-temporal analysis of EEG. Neural Computation, 2006. M. Dyrholm and L. C. Parra. Smooth bilinear classification of EEG. In Proceedings of the IEEE 2006 International Conference of the Engineering in Medicine and Biology Society, 2006. T. Fawcett. ROC graphs: Notes and practical considerations for data mining researchers. Technical report, HPL-2003-4. HP Laboratories, Palo Alto, CA, USA., 2003. A.D. Gerson, L.C. Parra, and P. Sajda. Cortical origins of response time variability during rapid discrimination of visual objects. NeuroImage, 28(2):326–341, 2005. R. A. Harshman. Foundations of the PARAFAC procedure: Models and conditions for an ‘explanatory’ multi-modal factor analysis. UCLA Working Papers in Phonetics, 16, 1970. J. B. Kruskal. Three-way arrays: Rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics. Linear Algebra and its Applications, 18:95–138, 1977. T.-W. Lee, M. Girolami, and T. J. Sejnowski. Independent component analysis using an extended infomax algorithm for mixed sub-gaussian and super-gaussian sources. Neural Computation, 11 (2):417–441, 1999. S. Makeig, A. J. Bell, T.-P. Jung, and T. J. Sejnowski. Independent component analysis of electroencephalographic data. In M. Mozer and M. Hasselmo, editors, Advances in Neural Information Processing Systems, pages 145–151, 1996. 1110 B ILINEAR D ISCRIMINANT C OMPONENT A NALYSIS E. Martinez-Montes, P. A. Valdes-Sosa, F. Miwakeichi, R. I. Goldman, and M. S. Cohen. Concurrent EEG/fMRI analysis by multiway Partial Least Squares. NeuroImage, 22(3):1023–1034, 2004. C. E. McCulloch and S. R. Searle. Generalized, Linear, and Mixed Models. Wiley, 2001. F. Miwakeichi, E. Martinez-Montes, P. A. Valdes-Sosa, N. Nishiyama, H. Mizuhara, and Y. Yamaguchi. Decomposing EEG data into space-time-frequency components using parallel factor analysis. Neuroimage, 22(3):1035–45, 2004. N. Mørch, L. Hansen, S. Strother, C. Svarer, D. Rottenberg, and B. Lautrup. Nonlinear vs. linear models in functional neuroimaging: Learning curves and generalization crossover. In Proceedings of the 15th international conference on information processing in medical imaging, volume 1230 of Lecture Notes in Computer Science, pages 259–270. Springer, 1997. J. M¨ cks. Decomposing event-related potentials: A new topographic components model. Biol o Psychol, 26(1-3):199–215, 1988. M. Mørup, L. K. Hansen, C. S. Hermann, J. Parnas, and S. M. Arnfred. Parallel factor analysis as an exploratory tool for wavelet transformed event-related EEG. NeuroImage, 29(3):938–947, feb 2006. H. B. Nielsen. IMMOPTIBOX. General optimization software available at http://www.imm.dtu. dk/˜hbn/immoptibox/, 2005. L. Parra, C. Spence, A. Gerson, and P. Sajda. Recipes for the linear analysis of EEG. NeuroImage, 28:326–341, 2005. W. D. Penny, N. J. Trujillo-Barreto, and K. J. Friston. Bayesian fMRI time series analysis with spatial priors. NeuroImage, 24:350–362, 2005. C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. 272, The MIT Press, Cambridge, Massachusetts, 2006. Y. Sakaguchi, S. Ozawa, and M. Kotani. Feature extraction using supervised independent component analysis by maximizing class distance. In Proc. of Int. Conf. on Neural Information Processing, volume 5, pages 2502–2506, 2002. K. C. Squires, E. Donchin, R. I. Herning, and G. McCarthy. On the influence of task relevance and stimulus probability on event-related-potential components. Electroencephalogr Clin Neurophysiol, 1977. S. Thorpe, D. Fize, and C. Marlot. Speed of processing in the human visual system. Nature, 381 (6582):520–2, 1996. M. Visani, C. Garcia, Jolion, and J.-M. Normalized radial basis function networks and bilinear discriminant analysis for face recognition. In Proceedings. IEEE Conference on Advanced Video and Signal Based Surveillance, pages 342–47, 2005. J. Ye. Characterization of a family of algorithms for generalized discriminant analysis on undersampled problems. Journal of Machine Learning Research, 6:483–502, 2005. 1111