iccv iccv2013 iccv2013-430 iccv2013-430-reference knowledge-graph by maker-knowledge-mining

430 iccv-2013-Two-Point Gait: Decoupling Gait from Body Shape


Source: pdf

Author: Stephen Lombardi, Ko Nishino, Yasushi Makihara, Yasushi Yagi

Abstract: Human gait modeling (e.g., for person identification) largely relies on image-based representations that muddle gait with body shape. Silhouettes, for instance, inherently entangle body shape and gait. For gait analysis and recognition, decoupling these two factors is desirable. Most important, once decoupled, they can be combined for the task at hand, but not if left entangled in the first place. In this paper, we introduce Two-Point Gait, a gait representation that encodes the limb motions regardless of the body shape. Two-Point Gait is directly computed on the image sequence based on the two point statistics of optical flow fields. We demonstrate its use for exploring the space of human gait and gait recognition under large clothing variation. The results show that we can achieve state-of-the-art person recognition accuracy on a challenging dataset.


reference text

[1] Blender. http : / /www . blender .org/ .

[2] CMU graphics lab motion capture database. http : / /mocap . c s . cmu .edu/ .

[3] MakeHuman. http : / /www . makehuman .org/ .

[4] M. Altab Hossain, Y. Makihara, J. Wang, and Y. Yagi. Clothing-

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17] invariant gait identification using part-based clothing categorization and adaptive weight control. Pattern Recognition, 43(6):2281–2291, June 2010. K. Bashir, T. Xiang, and S. Gong. Gait representation using flow fields. In BMVC, London, UK, Sep. 2009. G. Bradski. The OpenCV Library. Dr. Dobb ’s Journal of Software Tools, 2000. T. Chalidabhongse, V. Kruger, and R. Chellappa. The UMD database for human identification at a distance. Technical report, University of Maryland, 2001 . R. Collins, R. Gross, and J. Shi. Silhouette-based human identification from body shape and gait. In IEEE AFGR, pages 366–371, 2002. J. E. Cutting and L. T. Kozlowski. Recognizing friends by their walk: Gait perception without familiarity cues. Bulletin ofthe Psychonomic Society, 9(5):353–356, 1977. A. Elgammal and C. S. Lee. Separating style and content on a nonlinear manifold. In CVPR, pages 478–485, 2004. A. Gabell and U. S. Nayak. The effect of age on variability in gait. Journal of Gerontology, 39(6):662–666, 1984. C. J. Gommes, Y. Jiao, and S. Torquato. Microstructural Degeneracy associated with a Two-Point Correlation Function and its Information Content. ArXiv e-prints, May 2012. R. Gross and J. Shi. The cmu motion of body (mobo) database. Technical Report CMU-RI-TR-01-18, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, June 2001. J. Han and B. Bhanu. Individual recognition using gait energy image. IEEE TPAMI, 28(2):316– 322, 2006. J. Huang and D. Mumford. Statistics of natural images and models. In CVPR, volume 1, pages –547 Vol. 1, 1999. G. Johansson. Visual motion perception. Scientific American, 232:75–88, Jun. 1976. T. Kobayashi and N. Otsu. Action and simultaneous multiple-person identification using cubic higher-order local auto-correlation. In ICPR, volume 3, pages 741–744, Aug. 2004.

[18] T. H. W. Lam, K. H. Cheung, and J. N. K. Liu. Gait flow image: A silhouette-based gait representation for human identification. Pattern Recognition, 44:973–987, April 2011.

[19] A. B. Lee, D. Mumford, and J. Huang. Occlusion models for natural images: A statistical study of a scale-invariant dead leaves model. IJCV, 41(1-2):35–59, Jan. 2001.

[20] J. Little and J. Boyd. Recognizing people by their gait: The shape of motion. Videre: JCVR, 1(2): 1–13, 1996.

[21] Y. Makihara, B. S. Rossa, and Y. Yagi. Gait recognition using images of oriented smooth pseudo motion. In IEEE SMC, pages 1309–13 14, 2012.

[22] Y. Makihara, R. Sagawa, Y. Mukaigawa, T. Echigo, and Y. Yagi. Gait recognition using a view transformation model in the frequency domain. In ECCV, pages 15 1–163, 2006.

[23] C. Meneveau and A. B. Chhabra. Two-point statistics of multifractal measures. Physica A: Statistical Mechanics and its Applications, 164(3):564–574, 1990.

[24] M. Montero-Odasso, M. Schapira, E. R. Soriano, M. Varela, R. Kaplan, L. A. Camera, and L. M. Mayorga. Gait velocity as a single predictor of adverse events in healthy seniors aged 75 years and older. The journals of gerontology Series A Biological sciences and medical sciences, 60(10): 1304–1309, 2005.

[25] S. Mowbray and M. Nixon. Automatic gait recognition via fourier descriptors of deformable objects. In IEEE AVSBS, pages 566–573, 2003.

[26] E. Muybridge. Sallie gardner at a gallop. http : / /www . s fmuseum . org/hi st 3 / sal l .html. ie

[27] M. Nixon, J. Carter, J. Shutler, and M. Grant. Experimental plan for automatic gait recognition. Technical report, University of Southampton, 2001.

[28] P. Phillips, S. Sarkar, I. Robledo, P. Grother, and K. Bowyer. The gait identification challenge problem: data sets and baseline algorithm. In ICPR, volume 1, pages 385–388 vol. 1, 2002.

[29] C. L. Roether, L. Omlor, A. Christensen, and M. A. Giese. Critical features for the perception of emotion from gait. Journal of Vision, 9(6):1–32, 2009.

[30] S. Roweis and L. Saul. Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science, 290(2323–2326), 2000.

[31] P. Schneider, L. van Waerbeke, M. Kilbinger, and Y. Mellier. Analysis of two-point statistics of cosmic shear: I. estimators and covariances. 2002.

[32] L. Sigal, A. O. Balan, and M. J. Black. Humaneva: Synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion. IJCV, 87(1-2):4–27, Mar. 2010.

[33] L. Sigal, M. Isard, H. Haussecker, and M. J. Black. Loose-limbed people: Estimating 3d human pose and motion using non-parametric belief propagation. IJCV, 98(1): 15–48, May 2012.

[34] S. Stevenage, M. Nixon, and K. Vince. Visual analysis of gait as a cue to identity. Applied Cognitive Psychology, 13(6):5 13–526, Dec. 1999.

[35] M. W. Tao, J. Bai, P. Kohli, and S. Paris. Simpleflow: A non-iterative, sublinear optical flow algorithm. EG, 31(2), May 2012.

[36] J. B. Tenenbaum and W. T. Freeman. Separating style and content with bilinear models. Neural Comp., 12(6): 1247–1283, June 2000.

[37] R. Urtasun and P. Fua. 3d tracking for gait characterization and recognition. In IEEE AFGR, pages 17–22, 2004.

[38] A. Veeraraghavan, A. Chowdhury, and R. Chellappa. Role of shape and kinematics in human movement analysis. In IEEE CVPR, volume 1, pages I–730–I–737 Vol.1, 2004.

[39] A. Veeraraghavan, A. Roy-Chowdhury, and R. Chellappa. Matching shape sequences in video with applications in human movement analysis. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 27(12): 1896–1909, 2005.

[40] C. Wang, J. Zhang, L. Wang, J. Pu, and X. Yuan. Human identification using temporal information preserving gait template. IEEE TPAMI, 34(1 1):2164 –2176, nov. 2012.

[41] Wikipedia. Gait Wikipedia, the free encyclopedia, 2013.

[42] E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell. Distance metric learning, with application to clustering with side-information. In NIPS, pages 505–512. MIT Press, 2002.

[43] C. Yam, M. Nixon, and J. Carter. Automated person recognition by walking and running via model-based approaches. Pattern Recogni—

[44]

[45]

[46]

[47] tion, 37(5): 1057–1072, 2004. J. Yoo. Complete treatment of galaxy two-point statistics: Gravitational lensing effects and redshift-space distortions. prd, 79(2):023517, Jan. 2009. S. Yu, T. Tan, K. Huang, K. Jia, and X. Wu. A study on gait-based gender classification. IEEE TIP, 18(8): 1905–1910, 2009. G. Zhao, R. Chen, G. Chen, and H. Li. Amplitude spectrum-based gait recognition. In IEEE AFGR, pages 23–30, 2004. G. Zhao, R. Chen, G. Chen, and H. Li. Recognition of human periodic movements from unstructured information using a motionbased frequency domain approach. IVC, 24:795–809, 2006. 11004488