iccv iccv2013 iccv2013-424 iccv2013-424-reference knowledge-graph by maker-knowledge-mining

424 iccv-2013-Tracking Revisited Using RGBD Camera: Unified Benchmark and Baselines


Source: pdf

Author: Shuran Song, Jianxiong Xiao

Abstract: Despite significant progress, tracking is still considered to be a very challenging task. Recently, the increasing popularity of depth sensors has made it possible to obtain reliable depth easily. This may be a game changer for tracking, since depth can be used to prevent model drift and handle occlusion. We also observe that current tracking algorithms are mostly evaluated on a very small number of videos collectedandannotated by different groups. The lack of a reasonable size and consistently constructed benchmark has prevented a persuasive comparison among different algorithms. In this paper, we construct a unified benchmark dataset of 100 RGBD videos with high diversity, propose different kinds of RGBD tracking algorithms using 2D or 3D model, and present a quantitative comparison of various algorithms with RGB or RGBD input. We aim to lay the foundation for further research in both RGB and RGBD tracking, and our benchmark is available at http://tracking.cs.princeton.edu.


reference text

[1] A. Adam, E. Rivlin, and I. Shimshoni. Robust fragments-based tracking using the integral histogram. In CVPR, 2006. 2, 5

[2] S. Avidan. Support vector tracking. PAMI, 2004. 1

[3] B. Babenko, M.-H. Yang, and S. Belongie. Visual Tracking with Online Multiple Instance Learning. In CVPR, 2009. 1, 2, 5, 6, 7

[4] S. Baker, D. Scharstein, J. P. Lewis, S. Roth, M. J. Black, and R. Szeliski. A database and evaluation methodology for optical flow. IJCV, 2011. 2

[5] T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI, 2011. 5

[6] O. Chapelle. Training a support vector machine in the primal. Neural Computation, 2007. 4

[7] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, 2005. 4

[8] M. Everingham, H. Muller, and B. Thomas. Evaluating image segmentation algorithms using the pareto front. ECCV, 2002. 2

[9] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The pascal visual object classes (voc) challenge. IJCV, 2010. 2, 4

[10] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained part based models. PAMI, 2010. 4

[11] H. Grabner, C. Leistner, and H. Bischof. Semi-supervised on-line boosting for robust tracking. In ECCV, 2008. 1, 2, 6, 7

[12] S. Hare, A. Saffari, and P. H. S. Torr. Struck: Structured output tracking with kernels. In ICCV, 2011. 1, 2, 6, 7

[13] H. Jiang and J. Xiao. A linear approach to matching cuboids in RGBD images. In CVPR, 2013. 2

[14] A. Johnson. Spin-Images: A Representation for 3-D Surface Matching. PhD thesis, 1997. 4

[15] Z. Kalal, K. Mikolajczyk, and J. Matas. Tracking-learning-detection. PAMI, 2012. 2, 5, 6, 7

[16] J. Kwon and K. M. Lee. Visual tracking decomposition. In CVPR, 2010. 1, 2, 6, 7

[17] M. Luber, L. Spinello, and K. O. Arras. People tracking in rgb-d data with on-line boosted target models. In IROS, 2011. 2

[18] D. A. Ross, J. Lim, R.-S. Lin, and M.-H. Yang. Incremental learning for robust visual tracking. IJCV, 2008. 1, 2

[19] D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. IJCV, 2002. 2

[20] S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski. A comparison and evaluation of multi-view stereo reconstruction algorithms. In CVPR, 2006. 2

[21] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor segmentation and support inference from rgbd images. In ECCV, 2012. 2

[22] L. Spinello and K. O. Arras. People detection in rgb-d data. In IROS, 2011. 2

[23] A. Torralba and A. A. Efros. Unbiased look at dataset bias. In CVPR, 2011. 1

[24] J. van de Weijer, C. Schmid, and J. Verbeek. Learning color names from real-world images. In CVPR, 2007. 4

[25] C. Vondrick, A. Khosla, T. Malisiewicz, and A. Torralba. Inverting and visualizing features for object detection. ICCV, 2013. 3

[26] Y. Wu, J. Lim, and M. hsuan Yang. Online object tracking: A benchmark. In CVPR, 2013. 2

[27] J. Xiao, J. Hays, K. Ehinger, A. Oliva, and A. Torralba. SUN database: Large-scale scene recognition from abbey to zoo. In CVPR, 2010. 2

[28] J. Xiao, A. Owens, and A. Torralba. SUN3D: A database of big spaces reconstructed using sfm and object labels. In ICCV, 2013. 2

[29] J. Xiao, B. Russell, and A. Torralba. Localizing 3D cuboids in single- view images. In NIPS, 2012. 2

[30] K. Zhang, L. Zhang, and M.-H. Yang. Real-time compressive tracking. In ECCV, 2012. 1, 2, 6, 7 [3 1] Z. Zhang. Iterative point matching for registration of free-form curves and surfaces. IJCV, 1994. 5 240