iccv iccv2013 iccv2013-395 iccv2013-395-reference knowledge-graph by maker-knowledge-mining
Source: pdf
Author: Oliver Müller, Michael Ying Yang, Bodo Rosenhahn
Abstract: Inference in continuous label Markov random fields is a challenging task. We use particle belief propagation (PBP) for solving the inference problem in continuous label space. Sampling particles from the belief distribution is typically done by using Metropolis-Hastings (MH) Markov chain Monte Carlo (MCMC) methods which involves sampling from a proposal distribution. This proposal distribution has to be carefully designed depending on the particular model and input data to achieve fast convergence. We propose to avoid dependence on a proposal distribution by introducing a slice sampling based PBP algorithm. The proposed approach shows superior convergence performance on an image denoising toy example. Our findings are validated on a challenging relational 2D feature tracking application.
[1] C. Andrieu, N. de Freitas, A. Doucet, and M. I. Jordan. An introduction to mcmc for machine learning. Machine Learning, 50(1-2):5– 43, 2003.
[2] B. Babenko, M.-H. Yang, and S. Belongie. Visual tracking with online multiple instance learning. In CVPR, pages 983–990, 2011.
[3] F. Besse, C. Rother, A. Fitzgibbon, and J. Kautz. Pmbp: Patchmatch
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16] belief propagation for correspondence field estimation. In BMVC, 2012. Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph cuts. PAMI, 23: 1222–1239, 2001. G. Duan, H. Ai, S. Cao, and S. Lao. Group tracking: Exploring mutual relations for multiple object tracking. In ECCV (3), pages 129–143, 2012. A. Ihler and D. McAllester. Particle belief propagation. In AISTATS, pages 256–263, 2009. V. Kolmogorov. Convergent tree-reweighted message passing for energy minimization. PAMI, 28: 1568–1583, 2006. R. Kothapa, J. Pacheco, and E. B. Sudderth. Max-product particle belief propagation. Technical report, Brown University, 2011. W.-C. Lin and Y. Liu. Tracking dynamic near-regular textures under occlusion and rapid movements. In ECCV, pages 44–55, 2006. O. Ludwig, D. Delgado, V. Goncalves, and U. Nunes. Trainable classifier-fusion schemes: An application to pedestrian detection. In IEEE Intelligent Transportation Systems (ITSC), pages 1–6, 2009. O. Müller, M. Y. Yang, and B. Rosenhahn. http : / /www .tnt . uni-hannove r . de /papers /view_paper .php ? id= 9 9 6, 2013. R. M. Neal. Slice sampling. Ann. Statist., 31(3):705–767, 2003. With discussions and a rejoinder by the author. J. Peng, T. Hazan, D. McAllester, and R. Urtasun. Convex maxproduct algorithms for continuous mrfs with applications to protein folding. In ICML, 2011. M. Salzmann and R. Urtasun. Beyond feature points: Structured prediction for monocular non-rigid 3d reconstruction. In ECCV, pages 245–259. 2012. H. B. Shitrit, J. Berclaz, F. Fleuret, and P. Fua. Tracking multiple people under global appearance constraints. ICCV, pages 137–144, 2011. E. B. Sudderth, A. T. Ihler, M. Isard, W. T. Freeman, and A. S. Willsky. Nonparametric belief propagation. Communications of the ACM, 53(10):95–103, 2010.
[17] M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky. Map estimation via agreement on trees: message-passing and linear programming. IEEE Trans. Information Theory, 51:3697–3717, 2005.
[18] B. Walsh. Markov chain monte carlo and gibbs sampling. In Lecture Notes for EEB 581 version 26, April 2004.
[19] J. Xue, N. Zheng, J. Geng, and X. Zhong. Tracking multiple visual targets via particle-based belief propagation. IEEE Trans. Systems, Man, and Cybernetics, Part B, 38(1): 196 –209, 2008. 11 113366