iccv iccv2013 iccv2013-371 iccv2013-371-reference knowledge-graph by maker-knowledge-mining

371 iccv-2013-Saliency Detection via Absorbing Markov Chain


Source: pdf

Author: Bowen Jiang, Lihe Zhang, Huchuan Lu, Chuan Yang, Ming-Hsuan Yang

Abstract: In this paper, we formulate saliency detection via absorbing Markov chain on an image graph model. We jointly consider the appearance divergence and spatial distribution of salient objects and the background. The virtual boundary nodes are chosen as the absorbing nodes in a Markov chain and the absorbed time from each transient node to boundary absorbing nodes is computed. The absorbed time of transient node measures its global similarity with all absorbing nodes, and thus salient objects can be consistently separated from the background when the absorbed time is used as a metric. Since the time from transient node to absorbing nodes relies on the weights on the path and their spatial distance, the background region on the center of image may be salient. We further exploit the equilibrium distribution in an ergodic Markov chain to reduce the absorbed time in the long-range smooth background regions. Extensive experiments on four benchmark datasets demonstrate robustness and efficiency of the proposed method against the state-of-the-art methods.


reference text

[1] R. Achanta, F. Estrada, P. Wils, and S. S ¨usstrunk. Salient region detection and segmentation. In ICVS, 2008.

[2] R. Achanta, S. Hemami, F. Estrada, and S. Susstrunk. Frequencytuned salient region detection. In CVPR, 2009.

[3] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk. Slic superpixels. Technical Report, EPFL, 2010.

[4] A. Borji. Boosting bottom-up and top-down visual features for saliency estimation. In CVPR, 2012.

[5] A. Borji, D. N. Sihite, and L. Itti. Salient object detection: A benchmark. In ECCV, 2012.

[6] N. Bruce and J. Tsotsos. Saliency based on information maximization. NIPS, 2006.

[7] K. Chang, T. Liu, H. Chen, and S. Lai. Fusing generic objectness

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21] and visual saliency for salient object detection. In ICCV, 2011. M. Cheng, G. Zhang, N. J. Mitra, X. Huang, and S. Hu. Global contrast based salient region detection. In CVPR, 2011. L. d. F. Costa. Visual saliency and attention as random walks on complex networks. arXiv preprint physics/0603025, 2006. D. Gao and N. Vasconcelos. Bottom-up saliency is a discriminant process. In ICCV, 2007. V. Gopalakrishnan, Y. Hu, and D. Rajan. Random walks on graphs for salient object detection in images. TIP, 2010. C. M. Grinstead and J. L. Snell. Introduction to probability. American Mathematical Soc., 1998. C. Guo, Q. Ma, and L. Zhang. Spatio-temporal saliency detection using phase spectrum of quaternion fourier transform. In CVPR, 2008. J. Harel, C. Koch, and P. Perona. Graph-based visual saliency. In NIPS, 2006. X. Hou and L. Zhang. Saliency detection: A spectral residual approach. In CVPR, 2007. L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual attention for rapid scene analysis. PAMI, 1998. H. Jiang, J. Wang, Z. Yuan, T. Liu, N. Zheng, and S. Li. Automatic salient object segmentation based on context and shape prior. In BMVC, 2011. T. Liu, J. Sun, N. Zheng, X. Tang, and H.-Y. Shum. Learning to detect a salient object. In CVPR, 2007. Y. Lu, W. Zhang, H. Lu, and X. Xue. Salient object detection using concavity context. In ICCV, 2011. Y. Ma and H. Zhang. Contrast-based image attention analysis by using fuzzy growing. In ACM MM, 2003. L. Marchesotti, C. Cifarelli, and G. Csurka. A framework for visual saliency detection with applications to image thumbnailing. In CVPR, 2009. 11667711 Image GroundTruth Ours CB LR SVO RC CA GB SER Figure 9. Comparison of different methods on the ASD, SED and SOD datasets. The first three rows are from the ASD dataset, the middle three rows are from the SED dataset, the last three rows are from the SOD dataset. TMiCmeotehdo(esd)M0O.a1ut0rlas5bM1.Ca1tB7la9bTaM4bS0laeVt.3lO1a3.bCom0Cp.Ra1+0rC+i6sonoMf1La 1.vtRl9ear2abge M3xCea6ctA.lu0at5ibontiMm0eGa.4t(Bl1sae8bcond2CSs5Ep+.e1+Rr9ima0gCF.0e+T)1+.60CL.0+C0+20CS.0+R0+2M0a.I1tTl6a5b

[22] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In ICCV, 2001.

[23] V. Movahedi and J. H. Elder. Design and perceptual validation of performance measures for salient object segmentation. In CVPRW, 2010.

[24] V. Navalpakkam and L. Itti. An integrated model of top-down and bottom-up attention for optimizing detection speed. In CVPR, 2006.

[25] F. Perazzi, P. Krahenbuhl, Y. Pritch, and A. Hornung. Saliency filters: Contrast based filtering for salient region detection. In CVPR, 2012.

[26] Z. Ren, Y. Hu, L.-T. Chia, and D. Rajan. Improved saliency detection based on superpixel clustering and saliency propagation. In ACM, 2010.

[27] G. S, L. Zelnik-Manor, and A. Tal. Context-aware saliency detection. In CVPR, 2010.

[28] R. B. S. Alpert, M. Galun and A. Brandt. Image segmentation by probabilistic bottom-up aggregation and cue integration. In CVPR,

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37] 2007. X. Shen and Y. Wu. A unified approach to salient object detection via low rank matrix recovery. In CVPR, 2012. L. Wang, J. Xue, N. Zheng, and G. Hua. Automatic salient object extraction with contextual cue. In ICCV, 2011. W. Wang, Y. Wang, Q. Huang, and W. Gao. Measuring visual saliency by site entropy rate. In CVPR, 2010. X.-J. Wang, W.-Y. Ma, and X. Li. Data-driven approach for bridging the cognitive gap in image retrieval. In ICME, 2004. Y. Wei, F. Wen, W. Zhu, and J. Sun. Geodesic saliency using background priors. In ECCV, 2012. C. Yang, L. Zhang, and H. Lu. Graph-regularized saliency detection with convex-hull-based center prior. IEEE Signal Process. Lett., 20(7):637–640, 2013. C. Yang, L. Zhang, H. Lu, X. Ruan, and M.-H. Yang. Saliency detection via graph-based manifold ranking. In CVPR, 2013. J. Yang and M.-H. Yang. Top-down visual saliency via joint crf and dictionary learning. In CVPR, 2012. Y. Zhai and M. Shah. Visual attention detection in video sequences using spatiotemporal cues. In ACM MM, 2006. 11667722