iccv iccv2013 iccv2013-360 iccv2013-360-reference knowledge-graph by maker-knowledge-mining

360 iccv-2013-Robust Subspace Clustering via Half-Quadratic Minimization


Source: pdf

Author: Yingya Zhang, Zhenan Sun, Ran He, Tieniu Tan

Abstract: Subspace clustering has important and wide applications in computer vision and pattern recognition. It is a challenging task to learn low-dimensional subspace structures due to the possible errors (e.g., noise and corruptions) existing in high-dimensional data. Recent subspace clustering methods usually assume a sparse representation of corrupted errors and correct the errors iteratively. However large corruptions in real-world applications can not be well addressed by these methods. A novel optimization model for robust subspace clustering is proposed in this paper. The objective function of our model mainly includes two parts. The first part aims to achieve a sparse representation of each high-dimensional data point with other data points. The second part aims to maximize the correntropy between a given data point and its low-dimensional representation with other points. Correntropy is a robust measure so that the influence of large corruptions on subspace clustering can be greatly suppressed. An extension of our method with explicit introduction of representation error terms into the model is also proposed. Half-quadratic minimization is provided as an efficient solution to the proposed robust subspace clustering formulations. Experimental results on Hopkins 155 dataset and Extended Yale Database B demonstrate that our method outperforms state-of-the-art subspace clustering methods.


reference text