iccv iccv2013 iccv2013-303 iccv2013-303-reference knowledge-graph by maker-knowledge-mining
Source: pdf
Author: Seunghoon Hong, Suha Kwak, Bohyung Han
Abstract: We propose a novel offline tracking algorithm based on model-averaged posterior estimation through patch matching across frames. Contrary to existing online and offline tracking methods, our algorithm is not based on temporallyordered estimates of target state but attempts to select easyto-track frames first out of the remaining ones without exploiting temporal coherency of target. The posterior of the selected frame is estimated by propagating densities from the already tracked frames in a recursive manner. The density propagation across frames is implemented by an efficient patch matching technique, which is useful for our algorithm since it does not require motion smoothness assumption. Also, we present a hierarchical approach, where a small set of key frames are tracked first and non-key frames are handled by local key frames. Our tracking algorithm is conceptually well-suited for the sequences with abrupt motion, shot changes, and occlusion. We compare our tracking algorithm with existing techniques in real videos with such challenges and illustrate its superior performance qualitatively and quantitatively.
[1] A. Adam, E. Rivlin, and I. Shimshoni. Robust fragments-based tracking using the integral histogram. In CVPR, 2006. 6
[2] B. Babenko, M.-H. Yang, and S. Belongie. Robust object tracking with online multiple instance learning. TPAMI, 33(8), 2011. 1, 6
[3] C. Bao, Y. Wu, H. Ling, and H. Ji. Real time robust l1tracker using accelerated proximal gradient approach. In CVPR, 2012. 1, 6
[4] A. M. Buchanan and A. W. Fitzgibbon. Interactive feature tracking using K-D trees and dynamic programming. In CVPR, 2006. 1
[5] M. Everingham, L. van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The PASCAL visual object classes (VOC) challenge. IJCV, 88(2), 2010. 6
[6] S. Gu, Y. Zheng, and C. Tomasi. Linear time offline tracking and lower envelope algorithms. In ICCV, 2011. 1, 6
[7] B. Han, D. Comaniciu, Y. Zhu, and L. Davis. Sequential kernel density approximation and its application to real-time visual tracking. TPAMI, 30(7), 2008. 1
[8] B. Han, J. Hamm, and J. Sim. Personalized video summarization with human in the loop. In WACV, 2011. 5
[9] J. A. Hoeting, D. Madigan, A. E. Raftery, and C. T. Volinsky. Bayesian model averaging: A tutorial. Statistical Science, 14(4), 1999. 3
[10] X. Jia, H. Lu, and M.-H. Yang. Visual tracking via adaptive structural local sparse appearance model. In CVPR, 2012. 1, 6
[11] Z. Kalal, K. Mikolajczyk, and J. Matas. Tracking-LearningDetection. TPAMI, 2012. 1
[12] S. Korman and S. Avidan. Coherency sensitive hashing. In ICCV, 2011. 4, 5
[13] S. Kwak, W. Nam, B. Han, and J. H. Han. Learning occlusion with likelihoods for visual tracking. In ICCV, 2011. 5
[14] J. Kwon and K.-M. Lee. Tracking of abrupt motion using wanglandau monte carlo estimation. In ECCV, 2008. 1, 4, 5, 6
[15] J. Kwon and K.-M. Lee. Visual tracking decomposition. In CVPR, 2010. 5
[16] T. F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical Computer Science, 38, 1985. 5
[17] X. Mei and H. Ling. Robust visual tracking using l1minimization. In ICCV, 2009. 1, 6
[18] D. A. Ross, J. Lim, R.-S. Lin, and M.-H. Yang. Incremental learning for robust visual tracking. IJCV, 77(1-3), 2008. 1, 6
[19] D. Simakov, Y. Caspi, E. Shechtman, and M. Irani. Summarizing visual data using bidirectional similarity. In CVPR, 2008. 5
[20] J. Sun, W. Zhang, X. Tang, and H. yeung Shum. Bi-directional tracking using trajectory segment analysis. In ICCV, 2005. 1
[21] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 290, 2000. 5
[22] S. Uchida, I. Fujimura, H. Kawano, and Y. Feng. Analytical dynamic programming tracker. In ACCV, 2011. 1
[23] Y. Wei, J. Sun, X. Tang, and H.-Y. Shum. Interactive offline tracking for color objects. In ICCV, 2007. 1
[24] T. Zhang, B. Ghanem, S. Liu, and N. Ahuja. Robust visual tracking via multi-task sparse learning. In CVPR, 2012. 1, 6
[25] W. Zhong, H. Lu, and M.-H. Yang. Robust object tracking via sparsity-based collaborative model. In CVPR, 2012. 1, 6 22330022 ????????????????????????????? Figure 4. Tracking results for all sequences: (From top to bottom) animal, TUD, campus, accident, tennis, boxing, youngki, skating, psy, and dance 22330033