iccv iccv2013 iccv2013-288 iccv2013-288-reference knowledge-graph by maker-knowledge-mining

288 iccv-2013-Nested Shape Descriptors


Source: pdf

Author: Jeffrey Byrne, Jianbo Shi

Abstract: In this paper, we propose a new family of binary local feature descriptors called nested shape descriptors. These descriptors are constructed by pooling oriented gradients over a large geometric structure called the Hawaiian earring, which is constructed with a nested correlation structure that enables a new robust local distance function called the nesting distance. This distance function is unique to the nested descriptor and provides robustness to outliers from order statistics. In this paper, we define the nested shape descriptor family and introduce a specific member called the seed-of-life descriptor. We perform a trade study to determine optimal descriptor parameters for the task of image matching. Finally, we evaluate performance compared to state-of-the-art local feature descriptors on the VGGAffine image matching benchmark, showing significant performance gains. Our descriptor is thefirst binary descriptor to outperform SIFT on this benchmark.


reference text

[1] H. Bay, A. Ess, T. Tuytelaars, and L. Gool. SURF: Speeded up robust features. Computer Vision and Image Understanding, 10:346359, 2008.

[2] S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recognition using shape contexts. PAMI, 24(24):509– 521, April 2002. 1207 Figure 7. Evaluation of the nesting distance on VGG-Affine dataset. See text for a discussion. Figure 8. Trade study for the seed-of-life descriptor. (left-right) parameter analysis of orientations, lobes, scales and pooling.

[3] M. Calonder, V. Lepetit, C. Strecha, and P. Fua. BRIEF: Binary robust independent elementary features. In ECCV, 2010.

[4] V. Chandrasekhar, G. Takacs, D. Chen, S. Tsai, R. Grzeszczuk, and B. Girod. CHoG: Compressed histogram of gradients - a low bit rate feature descriptor. In CVPR, 2009.

[5] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge University Press, 2000.

[6] Y. Ke and R. Sukthankar. Pca-sift: A more distinctive representation for local image descriptors. In CVPR, 2004.

[7] K. Lenc, V. Gulshan, and A. Vedaldi. http : / /www . vlfeat . org/benchmarks /, 2012.

[8] S. Leutenegger, M. Chli, and R. Siegwart. Brisk: Binary robust invariant scalable keypoints. In ICCV, 2011.

[9] D. Lowe. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2):91–1 10, 2004.

[10] E. Mair, G. Hager, D. Burschka, M. Suppa, and G. Hirzinger. Adaptive and generic corner detection based on the accelerated segment test. In ECCV, 2010.

[11] K. Mikolajczyk and C. Schmid. A performance evaluation of local descriptors. PAMI, 27(10): 1615–1630, 2004.

[12] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir, and L. Gool. A comparison of affine region detectors. IJCV, 65(1):43–72, 2005.

[13] M. Muja and D. Lowe. Fast matching of binary features. In Ninth Conference on Computer and Robot Vision (CRV), pages 404 – 410, 2012.

[14] J. Mutch and D. Lowe. Object class recognition and localization using sparse features with limited receptive fields. IJCV, 80(1):45–57, October 2008.

[15] A. A. R. Ortiz and P. Vandergheynst. FREAK: Fast retina keypoint. In CVPR, 2012.

[16] D. Ramanan and S. Baker. Local distance functions: A taxonomy, new algorithms, and an evaluation. IEEE Pattern Analysis and Machine Intelligence (PAMI), 33(4):794–806, April 2011.

[17] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. ORB: An efficient alternative to SIFT or SURF. In ICCV, 2011.

[18] D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. IJCV, 47(1-3):7–42, April-June 2002.

[19] E. Simoncelli and W. Freeman. The steerable pyramid: A flexible architecture for multi-scale derivative computation. In IEEE Second Int’l Conf on Image Processing, 1995.

[20] E. Tola, V. Lepetit, and P. Fua. DAISY: An efficient dense descriptor applied to wide-baseline stereo. PAMI, 32(5):815– 830, 2010.

[21] T. Tuytelaars and K. Mikolajczyk. Local invariant feature detectors - survey. CVG, 3(1): 1–1 10, 2008.

[22] A. Tversky. Features of similarity. Psychological Review, 84:327–352, 1977.

[23] S. Winder, G. Hua, and M. Brown. Picking the best DAISY. In CVPR, 2009. 1208