iccv iccv2013 iccv2013-276 iccv2013-276-reference knowledge-graph by maker-knowledge-mining
Source: pdf
Author: Chen-Kuo Chiang, Te-Feng Su, Chih Yen, Shang-Hong Lai
Abstract: We present a multi-attributed dictionary learning algorithm for sparse coding. Considering training samples with multiple attributes, a new distance matrix is proposed by jointly incorporating data and attribute similarities. Then, an objective function is presented to learn categorydependent dictionaries that are compact (closeness of dictionary atoms based on data distance and attribute similarity), reconstructive (low reconstruction error with correct dictionary) and label-consistent (encouraging the labels of dictionary atoms to be similar). We have demonstrated our algorithm on action classification and face recognition tasks on several publicly available datasets. Experimental results with improved performance over previous dictionary learning methods are shown to validate the effectiveness of the proposed algorithm.
[1] M. Aharon, M. Elad, and A. Bruckstein. K-svd: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Processing, 54(1 1):43 11 4322, nov. 2006.
[2] A. Bobick and J. Davis. The recognition ofhuman movement using temporal templates. IEEE Trans. PAMI, 23(3):257– 267, mar 2001 .
[3] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex programming, version 1.21. http : / / cvxr . com/ cvx, Apr. 2011.
[4] P. Hoel, S. Port, and C. Stone. Introduction to Stochastic Processes. Waveland Pr Inc, 1986.
[5] Z.-L. Jiang, Z. Lin, and L. Davis. Learning a discriminative dictionary for sparse coding via label consistent k-svd. In CVPR, 2011.
[6] Z.-L. Jiang, G.-X. Zhang, and L. Davis. Submodular dictionary learning for sparse coding. In CVPR, 2012.
[7] L. Kaufman and P. J. Rousseeuw. Clustering by means of medoids. Fac., Univ., 1987.
[8] M. Kirsten and S. Wrobel. Extending k-means clustering to first-order representations. In ILP, volume 1866, pages 112– 129, 2000.
[9] A. Krause and V. Cevher. Submodular dictionary selection for sparse representation. In ICML, 2010.
[10] Y. Liu, R. Jin, R. Sukthankar, and F. Jurie. Unifying discriminative visual codebook generation with classifier training for object category recognition. In ICCV, june 2008.
[11] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning for matrix factorization and sparse coding. Journal of Machine Learning Research, 11:19 60, 2010.
[12] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. – –
[13]
[14]
[15] Discriminative learned dictionaries for local image analysis. In CVPR, june 2008. A. Martinez and R. Benavente. The ar face database. In CVC Technical Report, June 1998. I. Ram ı´rez, P. Sprechmann, and G. Sapiro. Classification and clustering via dictionary learning with structured incoherence and shared features. In CVPR, pages 3501–3508, 2010. T. Sim, S. Baker, and M. Bsat. The cmu pose, illumination, and expression database. IEEE Trans. PAMI, 25(12): 1615 1618, dec. 2003. F. Siyahjani and G. Doretto. Learning a context aware dictionary for sparse representation. In ACCV, 2012. D. Weinland, R. Ronfard, and E. Boyer. Free viewpoint action recognition using motion history volumes. CVIU, 104(2):249 257, 2006. J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma. Robust face recognition via sparse representation. IEEE Trans. PAMI, 3 1(2):210 –227, feb. 2009. M. Yang, L. Zhang, X.-C. Feng, and D. Zhang. Fisher discrimination dictionary learning for sparse representation. In ICCV, 2011. Q. Zhang and B. Li. Discriminative k-svd for dictionary learning in face recognition. In CVPR, 2010. –
[16]
[17] –
[18]
[19]
[20] 11 114444