iccv iccv2013 iccv2013-202 iccv2013-202-reference knowledge-graph by maker-knowledge-mining

202 iccv-2013-How Do You Tell a Blackbird from a Crow?


Source: pdf

Author: Thomas Berg, Peter N. Belhumeur

Abstract: How do you tell a blackbirdfrom a crow? There has been great progress toward automatic methods for visual recognition, including fine-grained visual categorization in which the classes to be distinguished are very similar. In a task such as bird species recognition, automatic recognition systems can now exceed the performance of non-experts – most people are challenged to name a couple dozen bird species, let alone identify them. This leads us to the question, “Can a recognition system show humans what to look for when identifying classes (in this case birds)? ” In the context of fine-grained visual categorization, we show that we can automatically determine which classes are most visually similar, discover what visual features distinguish very similar classes, and illustrate the key features in a way meaningful to humans. Running these methods on a dataset of bird images, we can generate a visual field guide to birds which includes a tree of similarity that displays the similarity relations between all species, pages for each species showing the most similar other species, and pages for each pair of similar species illustrating their differences.


reference text

[1] T. Berg and P. N. Belhumeur. POOF: Part-based One-vs-One Features for fine-grained categorization, face verification, and attribute estimation. In Proc. CVPR, 2013. 1, 2, 3, 4

[2] T. L. Berg, A. C. Berg, and J. Shih. Automatic attribute discovery and characterization from noisy web data. In Proc. ECCV, 2010. 3

[3] S. Branson, C. Wah, B. Babenko, F. Schroff, P. Welinder, P. Perona, and S. Belongie. Visual recognition with humans in the loop. In Proc. ECCV, 2010. 3

[4] Cornell Lab of Ornithhology. allaboutbirds.org, 2011. 8

[5] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In Proc. CVPR, 2005. 3

[6] J. Deng, J. Krause, and L. Fei-Fei. Fine-grained crowdsourcing for fine-grained recognition. In Proc. CVPR, 2013. 3

[7] C. Doersch, S. Singh, A. Gupta, J. Sivic, and A. A. Efros. What makes paris look like paris? ACM Trans. Graphics, 31(4), 2012. 3

[8] K. Duan, D. Parikh, D. Crandall, and K. Grauman. Discovering localized attributes for fine-grained recognition. In Proc. CVPR, 2012. 3

[9] R. Farrell, O. Oza, N. Zhang, V. I. Morariu, T. Darrell, and L. S. Davis. Birdlets: Subordinate categorization using volumetric primitives and pose-normalized appearance. In Proc. ICCV, 2011. 3

[10] R. A. Fisher. The use ofmultiple measurements in taxonomic problems. Ann. Eugenics, 7(2), 1936. 4

[11] D. J. Futuyma. Evolutionary Biology, page 763. Sinauer Associates, 1997. 2

[12] W. Jetz, G. H. Thomas, J. B. Joy, K. Hartmann, and A. O. Mooers. The global diversity of birds in space and time. Nature, 491(7424), 2012. 5

[13] N. Kumar, P. N. Belhumeur, A. Biswas, D. W. Jacobs, W. J. Kress, I. Lopez, and J. V. B. Soares. Leafsnap: A computer vision system for automatic plant species identification. In Proc. ECCV, 2012. 3

[14] I. Letunic and P. Bork. Interactive tree oflife (itol): An online tool for phylogenetic tree display and annotation. Bioinformatics, 23(1), 2007. 7

[15] J. Liu, A. Kanazawa, D. Jacobs, and P. Belhumeur. Dog breed classification using part localization. In ECCV, 2012. 3

[16] M.-E. Nilsback and A. Zisserman. Automated flower classification over a large number of classes. In Indian Conf. Computer Vision Graphics and Image Processing, 2008. 3

[17] D. Parikh and K. Grauman. Interactively building a discriminative vocabulary of nameable attributes. In Proc. CVPR, 2011. 3

[18] O. M. Parkhi, A. Vedaldi, A. Zisserman, and C. V. Jawahar. Cats and dogs. In Proc. CVPR, 2012. 3

[19] P. Prasong and K. Chamnongthai. Face-Recognition-Based dog-Breed classification using size and position of each local part, and pca. In Proc. Int. Conf. Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, 2012. 3

[20] N. Saitou and M. Nei. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 1987. 2, 7, 8

[21] A. Shrivastava, T. Malisiewicz, A. Gupta, and A. A. Efros. Data-driven visual similarity for cross-domain image matching. ACM Trans. Graphics, 30(6), 2011. 3

[22] D. A. Sibley. The Sibley Guide to Birds. Knopf, 2000. 1, 3, 5

[23] L. Svensson, K. Mullarney, and D. Zetterstr o¨m. Collins Bird Guide. Collins, 2011. 1

[24] B. Tversky and K. Hemenway. Objects, parts, and categories. J. Experimental Psychology: General, 113(2), 1984. 2

[25] C. Wah, S. Branson, P. Perona, and S. Belongie. Multiclass recognition and part localization with humans in the loop. In Proc. ICCV, 2011. 3

[26] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The Caltech-UCSD Birds-200-201 1 Dataset. Technical Report CNS-TR-201 1-001, California Institute of Technology, 2011. 3

[27] J. Wang, K. Markert, and M. Everingham. Learning models for object recognition from natural language descriptions. In Proc. British Machine Vision Conf., 2009. 3

[28] K. Yanai and K. Barnard. Image region entropy: A measure of “visualness” of web images associated with one concept. In ACM Int. Conf. Multimedia, 2005. 3

[29] B. Yao, G. Bradski, and L. Fei-Fei. A codebook-free and annotation-free approach for fine-grained image categorization. In Proc. CVPR, 2012. 1, 3

[30] N. Zhang, R. Farrell, and T. Darrell. Pose pooling kernels for sub-category recognition. In Proc. CVPR, 2012. 3 16