iccv iccv2013 iccv2013-103 iccv2013-103-reference knowledge-graph by maker-knowledge-mining

103 iccv-2013-Deblurring by Example Using Dense Correspondence


Source: pdf

Author: Yoav Hacohen, Eli Shechtman, Dani Lischinski

Abstract: This paper presents a new method for deblurring photos using a sharp reference example that contains some shared content with the blurry photo. Most previous deblurring methods that exploit information from other photos require an accurately registered photo of the same static scene. In contrast, our method aims to exploit reference images where the shared content may have undergone substantial photometric and non-rigid geometric transformations, as these are the kind of reference images most likely to be found in personal photo albums. Our approach builds upon a recent method for examplebased deblurring using non-rigid dense correspondence (NRDC) [11] and extends it in two ways. First, we suggest exploiting information from the reference image not only for blur kernel estimation, but also as a powerful local prior for the non-blind deconvolution step. Second, we introduce a simple yet robust technique for spatially varying blur estimation, rather than assuming spatially uniform blur. Unlike the aboveprevious method, which hasproven successful only with simple deblurring scenarios, we demonstrate that our method succeeds on a variety of real-world examples. We provide quantitative and qualitative evaluation of our method and show that it outperforms the state-of-the-art.


reference text

[1] A. Agrawal, Y. Xu, and R. Raskar. Invertible motion blur in video. ACM Trans. Graph., 28:95: 1–95:8, July 2009.

[2] C. Ancuti, C. O. Ancuti, and P. Bekaert. Deblurring by matching. Comput. Graph. Forum, 28(2):619–628, 2008.

[3] J. Chen, L. Yuan, C.-K. Tang, and L. Quan. Robust dual motion deblurring. In Proc. CVPR, 2008.

[4] S. Cho and S. Lee. Fast motion deblurring. ACM Trans. Graph., pages 145: 1–145:8, 2009.

[5] S. Cho, J. Wang, and S. Lee. Video deblurring for hand-held cameras using patch-based synthesis. ACM Trans. Graph., 31(4):64: 1–64:9, July 2012.

[6] T. S. Cho, S. Paris, B. K. P. Horn, and W. T. Freeman. Blur kernel estimation using the radon transform. In CVPR, pages 241–248. IEEE, 2011.

[7] T. S. Cho, C. L. Zitnick, N. Joshi, S. B. Kang, R. Szeliski, and W. T. Freeman. Image restoration by matching gradient distributions. IEEE Trans. Pattern Anal. Mach. Intell., 34(4):683–694, 2012.

[8] Z. Farbman, R. Fattal, and D. Lischinski. Convolution pyramids. ACM Trans. Graph., 30(6): 175:1–8, Dec. 2011.

[9] R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T. Freeman. Removing camera shake from a single photograph. ACM Trans. Graph., pages 787–794, 2006.

[10] A. Gupta, N. Joshi, C. L. Zitnick, M. Cohen, and B. Curless. Single image deblurring using motion density functions. In Proc. ECCV: Part I, pages 171–184, 2010.

[11] Y. HaCohen, E. Shechtman, D. B. Goldman, and D. Lischinski. Non-rigid dense correspondence with applications for image enhancement. ACM Trans. Graph. , 30(4):70: 1–70:9, 2011.

[12] S. Harmeling, M. Hirsch, and B. Sch o¨lkopf. Spacevariant single-image blind deconvolution for removing camera shake. In NIPS, pages 829–837, 2010.

[13] M. Hirsch, C. J. Schuler, S. Harmeling, and B. Sch o¨lkopf. Fast removal of non-uniform camera shake. In ICCV, pages

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23] 463–470, 2011. M. Hirsch, S. Sra, B. Scholkopf, and S. Harmeling. Efficient filter flow for space-variant multiframe blind deconvolution. In Proc. CVPR, pages 607–614, 2010. N. Joshi, W. Matusik, E. H. Adelson, and D. J. Kriegman. Personal photo enhancement using example images. ACM Trans. Graph. , 29(2): 12: 1–12: 15, April 2010. N. Joshi, R. Szeliski, and D. J. Kriegman. Psf estimation using sharp edge prediction. In CVPR, 2008. R. K ¨ohler, M. Hirsch, B. Mohler, B. Sch o¨lkopf, and S. Harmeling. Recording and playback of camera shake: benchmarking blind deconvolution with a real-world database. In Proc. ECCV: Part VII, pages 27–40, 2012. D. Krishnan, T. Tay, and R. Fergus. Blind deconvolution using a normalized sparsity measure. In CVPR, pages 233– 240. IEEE, 2011. A. Levin, R. Fergus, F. Durand, and W. T. Freeman. Image and depth from a conventional camera with a coded aperture. ACM Trans. Graph., 26(3), July 2007. A. Levin, Y. Weiss, F. Durand, and W. Freeman. Understanding and evaluating blind deconvolution algorithms. In Proc. CVPR, pages 1964–1971, Los Alamitos, CA, USA, 2009. IEEE Computer Society. A. Levin, Y. Weiss, F. Durand, and W. T. Freeman. Efficient marginal likelihood optimization in blind deconvolution. In Proc. CVPR. IEEE, June 2011. A. Rav-Acha and S. Peleg. Two motion-blurred images are better than one. Pattern Recogn. Lett., 26:3 11–3 17, February 2005. Q. Shan, Z. Li, J. Jia, and C.-K. Tang. Fast image/video upsampling. ACM Trans. Graph., 27(5): 1–7, 2008.

[24] L. Sun, S. Cho, J. Wang, and J. Hays. Edge-based blur kernel estimation using patch priors. In Proc. ICCP, 2013.

[25] O. Whyte, J. Sivic, and A. Zisserman. Deblurring shaken and partially saturated images. In Workshop on Color and Photometry in Computer Vision, with ICCV 2011, 2011.

[26] O. Whyte, J. Sivic, A. Zisserman, and J. Ponce. Non-uniform deblurring for shaken images. In CVPR, 2010.

[27] L. Yuan, J. Sun, L. Quan, and H.-Y. Shum. Image deblurring with blurred/noisy image pairs. ACM Trans. Graph., 26(3), July 2007.

[28] D. Zoran and Y. Weiss. From learning models of natural image patches to whole image restoration. In Proc. ICCV, 2011, pages 479–486, 2011. 22339911