iccv iccv2013 iccv2013-89 iccv2013-89-reference knowledge-graph by maker-knowledge-mining
Source: pdf
Author: Dapeng Chen, Zejian Yuan, Yang Wu, Geng Zhang, Nanning Zheng
Abstract: Representation is a fundamental problem in object tracking. Conventional methods track the target by describing its local or global appearance. In this paper we present that, besides the two paradigms, the composition of local region histograms can also provide diverse and important object cues. We use cells to extract local appearance, and construct complex cells to integrate the information from cells. With different spatial arrangements of cells, complex cells can explore various contextual information at multiple scales, which is important to improve the tracking performance. We also develop a novel template-matching algorithm for object tracking, where the template is composed of temporal varying cells and has two layers to capture the target and background appearance respectively. An adaptive weight is associated with each complex cell to cope with occlusion as well as appearance variation. A fusion weight is associated with each complex cell type to preserve the global distinctiveness. Our algorithm is evaluated on 25 challenging sequences, and the results not only confirm the contribution of each component in our tracking system, but also outperform other competing trackers.
[1] A. Adam, E. Rivlin, and I. Shimshoni. Robust fragments-based tracking using the integral histogram. In CVPR, 2006. 1, 2, 3
[2] B. Babenko, M.-H. Yang, and S. Belongie. Visual Tracking with Online Multiple Instance Learning. In CVPR, 2009. 2, 5, 7
[3] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, 2005. 2
[4] A. Doucet and A. M. Johansen. A tutorial on particle filtering and smoothing: fifteen years later, 2011. 5
[5] H. Grabner, M. Grabner, and H. Bischof. Real-time tracking via online boosting. In BMVC, 2006. 2, 7
[6] H. Grabner, C. Leistner, and H. Bischof. Semi-supervised on-line boosting for robust tracking. In ECCV, 2008. 2, 7
[7] S. Hare, A. Saffari, and P. H. S. Torr. Struck: Structured output tracking with kernels. In ICCV, 2011. 2, 7
[8] S. He, Q. Yang, R. W. Lau, J. Wang, and M.-H. Yang. Visual tracking via locality sensitive histograms. In CVPR, 2013. 1, 2, 3, 7
[9] W. He, T. Yamashita, H. Lu, and S. Lao. Surf tracking. In ICCV, 2009. 2
[10] D. Hubel and T. Wiesel. Receptive fields and functional architecture of monkey striate cortex. J Physiol, pages 215–43, 1968. 2
[11] A. Jain, K. Nandakumar, and A. Ross. Score normalization in multimodal biometric systems. Pattern Recogn., 38(12):2270–2285, Dec. 2005. 4 Table 6. The average CLEs of the nine trackers on the 25 sequences. SemiCTOABMILLSHTASLAStruckTLDCCT
[12] S. JamesSteven and D. Ramanan. Self-paced learning for long term tracking. In CVPR, 2013. 2
[13] X. Jia, H. Lu, and M.-H. Yang. Visual tracking via adaptive structural local sparse appearance model. In CVPR, 2012. 2, 7
[14] Z. Kalal, K. Mikolajczyk, and J. Matas. Tracking-learning-detection. TPAMI, 34(7): 1409–1422, 2012. 2, 7
[15] J. Kwon and K. M. Lee. Visual tracking decomposition. In CVPR, 2010. 5
[16] T. Lee and S. Soatto. Learning and matching multiscale template descriptors for real-time detection, localization and tracking. In CVPR, 2011. 1, 2
[17] B. Liu, J. Huang, C. Kulikowski, and L. Yang. Robust visual tracking using local sparse appearance model and k-selection. TPAMI, 2012. 1, 2
[18] T. Liu, Z. Yuan, J. Sun, J. Wang, N. Zheng, X. Tang, and H.-Y. Shum. Learning to detect a salient object. TPAMI., 33(2):353–367, 2011. 2
[19] V. Mahadevan and N. Vasconcelos. On the connections between
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32] saliency and tracking. In NIPS. 2012. 2 X. Mei and H. Ling. Robust visual tracking using l1 minimization. In ICCV, 2009. 1, 2 M. O¨zuysal, M. Calonder, V. Lepetit, and P. Fua. Fast keypoint recognition using random ferns. TPAMI, 32(3):448–461, 2010. 2 D. A. Ross, J. Lim, R.-S. Lin, and M.-H. Yang. Incremental learning for robust visual tracking. IJCV, 77(1-3): 125–141, May 2008. 2 J. Santner, C. Leistner, A. Saffari, T. Pock, and H. Bischof. PROST Parallel Robust Online Simple Tracking. In CVPR, 2010. 5 G. G. Scandaroli, M. Meilland, and R. Richa. Improving ncc-based direct visual tracking. In ECCV, 2012. 2 L. Sevilla-Lara. Distribution fields for tracking. In CVPR, 2012. 1, 2 M. Usher, Y. Bonneh, D. Sagi, and M. Herrmann. Mechanisms for spatial integration in visual detection: a model based on lateral interactions. Spat Vis, 12(2): 187–209, 1999. 2 P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. In CVPR, 2001. 2 S. Wang, H. Lu, F. Yang, and M.-H. Yang. Superpixel tracking. In ICCV, 2011. 2 Y. Wu, J. Lim, and M.-H. Yang. Online object tracking: A benchmark. In CVPR, 2013. 5, 7 K. Zhang, L. Zhang, and M.-H. Yang. Real-time compressive tracking. In ECCV (3), 2012. 2, 5, 7 L. Zhang and L. van der Maaten. Structure preserving object tracking. In CVPR, 2013. 2 W. Zhong, H. Lu, and M.-H. Yang. Robust object tracking via sparsity-based collaborative model. In CVPR, 2012. 2, 5 11 112200