emnlp emnlp2012 emnlp2012-115 emnlp2012-115-reference knowledge-graph by maker-knowledge-mining

115 emnlp-2012-SSHLDA: A Semi-Supervised Hierarchical Topic Model


Source: pdf

Author: Xian-Ling Mao ; Zhao-Yan Ming ; Tat-Seng Chua ; Si Li ; Hongfei Yan ; Xiaoming Li

Abstract: Supervised hierarchical topic modeling and unsupervised hierarchical topic modeling are usually used to obtain hierarchical topics, such as hLLDA and hLDA. Supervised hierarchical topic modeling makes heavy use of the information from observed hierarchical labels, but cannot explore new topics; while unsupervised hierarchical topic modeling is able to detect automatically new topics in the data space, but does not make use of any information from hierarchical labels. In this paper, we propose a semi-supervised hierarchical topic model which aims to explore new topics automatically in the data space while incorporating the information from observed hierarchical labels into the modeling process, called SemiSupervised Hierarchical Latent Dirichlet Allocation (SSHLDA). We also prove that hLDA and hLLDA are special cases of SSHLDA. We . conduct experiments on Yahoo! Answers and ODP datasets, and assess the performance in terms of perplexity and clustering. The experimental results show that predictive ability of SSHLDA is better than that of baselines, and SSHLDA can also achieve significant improvement over baselines for clustering on the FScore measure.


reference text

D. Blei and J. Lafferty. 2006. Correlated topic models. Advances in neural information processing systems, 18: 147. D.M. Blei and J.D. McAuliffe. 2007. Supervised topic models. In Proceeding of the Neural Information Processing Systems(nips). D.M. Blei and J.D. McAuliffe. 2010. Supervised topic models. Arxiv preprint arXiv:1003.0783. D.M. Blei, A.Y. Ng, and M.I. Jordan. 2003. Latent dirichlet allocation. The Journal of Machine Learning Research, 3:993–1022. D. Blei, T.L. Griffiths, M.I. Jordan, and J.B. Tenenbaum. 2004. Hierarchical topic models and the nested chinese restaurant process. Advances in neural informa- tion processing systems, 16: 106. C. Chemudugunta, A. Holloway, P. Smyth, and M. Steyvers. 2008a. Modeling documents by combining semantic concepts with unsupervised statistical learning. The Semantic Web-ISWC 2008, pages 229– 244. C. Chemudugunta, P. Smyth, and M. Steyvers. 2008b. Combining concept hierarchies and statistical topic models. In Proceeding of the 17th ACM conference on Information and knowledge management, pages 1469– 1470. ACM. C. Chemudugunta, P. Smyth, and M. Steyvers. 2008c. Text modeling using unsupervised topic models and concept hierarchies. Arxiv preprint arXiv:0808.0973. S. Deerwester, S.T. Dumais, G.W. Furnas, T.K. Landauer, and R. Harshman. 1990. Indexing by latent semantic analysis. Journal of the American society for information science, 41(6):391–407. T. Hofmann. 1999. Probabilistic latent semantic analysis. In Proc. of Uncertainty in Artificial Intelligence, UAI’99, page 21. Citeseer. G. Karypis. 2005. Cluto: Software for clustering high dimensional datasets. Internet Website (last accessed, June 2008), http://glaros.dtc.umn.edu/gkhome/cluto/cluto/overview. S. Lacoste-Julien, F. Sha, and M.I. Jordan. 2008. ndisclda: Discriminative learning for dimensionality re- 809 duction and classification. Advances in Neural Information Processing Systems, 21. W. Li and A. McCallum. 2006. Pachinko allocation: Dag-structured mixture models of topic correlations. In Proceedings of the 23rd international conference on Machine learning, pages 577–584. ACM. C.D. Manning, P. Raghavan, and H. Schutze. 2008. Introduction to information retrieval, volume 1. Cambridge University Press Cambridge. D. Mimno, W. Li, and A. McCallum. 2007. Mixtures of hierarchical topics with pachinko allocation. In Proceedings of the 24th international conference on Machine learning, pages 633–640. ACM. Z.Y. Ming, K. Wang, and T.S. Chua. 2010. Prototype hierarchy based clustering for the categorization and navigation of web collections. In Proceeding of the 33rd international ACM SIGIR, pages 2–9. ACM. T.P. Minka. 2003. Estimating a dirichlet distribution. Annals of Physics, 2000(8): 1–13. A. Perotte, N. Bartlett, N. Elhadad, and F. Wood. 2011. Hierarchically supervised latent dirichlet allocation. Neural Information Processing Systems (to appear). Y. Petinot, K. McKeown, and K. Thadani. 2011. A hierarchical model of web summaries. In Proceedings of the 49th Annual Meeting of the ACL: Human Language Technologies: shortpapers-Volume 2, pages 670–675. ACL. D. Ramage, D. Hall, R. Nallapati, and C.D. Manning. 2009a. Labeled lda: A supervised topic model for credit attribution in multi-labeled corpora. In Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing: Volume 1-Volume 1, pages 248–256. Association for Computational Linguistics. D. Ramage, P. Heymann, C.D. Manning, and H. GarciaMolina. 2009b. Clustering the tagged web. In Proceedings of the Second ACM International Conference on Web Search and Data Mining, pages 54–63. ACM. D. Ramage, C.D. Manning, and S. Dumais. 2011. Partially labeled topic models for interpretable text mining. In Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 457–465. ACM. M. Rosen-Zvi, T. Griffiths, M. Steyvers, and P. Smyth. 2004. The author-topic model for authors and documents. In Proceedings of the 20th conference on Uncertainty in artificial intelligence, pages 487–494. AUAI Press. T.N. Rubin, A. Chambers, P. Smyth, and M. Steyvers. 2011. Statistical topic models for multi-label document classification. Arxiv preprint arXiv:1107.2462. Y.W. Teh, M.I. Jordan, M.J. Beal, and D.M. Blei. 2006. Hierarchical dirichlet processes. Journal of the American Statistical Association, 101(476): 1566–1581 .