cvpr cvpr2013 cvpr2013-432 cvpr2013-432-reference knowledge-graph by maker-knowledge-mining
Source: pdf
Author: Ramakrishna Kakarala, Prabhu Kaliamoorthi, Vittal Premachandran
Abstract: We show that bilateral symmetry plane estimation for three-dimensional (3-D) shapes may be carried out accurately, and efficiently, in the spherical harmonic domain. Our methods are valuable for applications where spherical harmonic expansion is already employed, such as 3-D shape registration, morphometry, and retrieval. We show that the presence of bilateral symmetry in the 3-D shape is equivalent to a linear phase structure in the corresponding spherical harmonic coefficients, and provide algorithms for estimating the orientation of the symmetry plane. The benefit of using spherical harmonic phase is that symmetry estimation reduces to matching a compact set of descriptors, without the need to solve a correspondence problem. Our methods work on point clouds as well as large-scale mesh models of 3-D shapes.
[1] A. Bermanis, A. Averbuch, and Y. Keller. 3-D symmetry detection and analysis using the pseudo-polar Fourier transform. International Journal of Computer Vision, 90(2): 166– 182, 2010. 2, 6
[2] X. Chen, A. Golovinskiy, and T. Funkhouser. A benchmark for 3D mesh segmentation. ACM Transactions on Graphics (Proc. SIGGRAPH), 28(3), Aug. 2009. 6
[3] M. K. Chung, K. M. Dalton, L. Shen, A. C. Evans, and R. J. Davidson. Weighted Fourier series representation and its application to quantifying the amount of gray matter. IEEE Transactions on Medical Imaging, 26(4):566–581, 2007. 1, 3, 6, 8
[4] J. Gall, J. Potthoff, C. Schnrr, B. Rosenhahn, and H.-P. Seidel. Interacting and annealing particle filters: Mathematics and a recipe for applications. Journal of Mathematical Imaging and Vision, pages 1–18, 2007. 6
[5] R. Kakarala and J. A. Cadzow. Estimation of phase for noisy linear phase signals. IEEE Transactions on Signal Processing, 44(10):2483–2497, 1996. 4
[6] M. M. Kazhdan, B. Chazelle, D. P. Dobkin, A. Finkelstein, and T. A. Funkhouser. A reflective symmetry descriptor. In ECCV (2), pages 642–656, 2002. 1, 2
[7] M. M. Kazhdan, T. A. Funkhouser, and S. Rusinkiewicz. Rotation invariant spherical harmonic representation of 3D shape descriptors. In Symposium on Geometry Processing, pages 156–164, 2003. 1, 8
[8] P. Kostelec and D. Rockmore. FFTs on the rotation group. Journal of Fourier Analysis and Applications, 14: 145–179, 2008. 5, 6
[9] A. Makadia and K. Daniilidis. Spherical correlation of visual representations for 3D model retrieval. International Journal
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17] of Computer Vision, 89(2-3): 193–210, 2010. 1, 2, 3, 5, 6, 8 A. Makadia, A. Patterson, and K. Daniilidis. Fully automatic registration of 3D point clouds. In CVPR, pages 1297–1304, 2006. 1, 8 A. Martinet, C. Soler, N. Holzschuch, and F. Sillion. Accurate detection of symmetries in 3D shapes. ACM Transactions on Graphics, 25(2):439 – 464, April 2006. 1, 2, 3, 6 N. J. Mitra, L. J. Guibas, and M. Pauly. Partial and approximate symmetry detection for 3D geometry. ACM Transactions on Graphics, 25(3):560–568, 2006. 1 N. J. Mitra, M. Pauly, M. Wand, and D. Ceylan. Symmetry in 3D geometry: Extraction and applications. In EUROGRAPHICS State-of-the-art Report, 2012. 2 R. Osada, T. A. Funkhouser, B. Chazelle, and D. P. Dobkin. Shape distributions. ACM Transactions on Graphics, 21(4):807–832, 2002. 6 V. T. Porethi, A. Godil, H. Dutagaci, T. Furuya, Z. Lian, and R. Ohbuchi. SHREC’ 10 track: Generic 3D warehouse. In 3DOR, pages 93–100, 2010. 6 M. Quicke, C. Brechb¨ uhler, J. Hug, H. Blattman, and G. Sz´ ekely. Parameterization of closed surfaces for parametric surface description. In CVPR, pages 1354–1360, 2000. 8 D. Raviv, A. M. Bronstein, M. M. Bronstein, and R. Kimmel. Full and partial symmetries of non-rigid shapes. International Journal of Computer Vision, 89(1): 18–39, 2010. 2, 7
[18] P. Shilane, P. Min, M. M. Kazhdan, and T. A. Funkhouser. The princeton shape benchmark. In SMI, pages 167–178, 2004. 6
[19] S. N. Sinha, K. Ramnath, and R. Szeliski. Detecting and reconstructing 3D mirror symmetric objects. In ECCV (2), pages 586–600, 2012. 2
[20] C. Sun and J. Sherrah. 3D symmetry detection using the extended gaussian image. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(2): 164–168, 1997. 1, 2, 6
[21] D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii. Quantum theory of angular momentum. World Scientific, Singapore, 1988. 2 222555666