cvpr cvpr2013 cvpr2013-417 cvpr2013-417-reference knowledge-graph by maker-knowledge-mining
Source: pdf
Author: Jian Dong, Wei Xia, Qiang Chen, Jianshi Feng, Zhongyang Huang, Shuicheng Yan
Abstract: In this paper, we introduce a subcategory-aware object classification framework to boost category level object classification performance. Motivated by the observation of considerable intra-class diversities and inter-class ambiguities in many current object classification datasets, we explicitly split data into subcategories by ambiguity guided subcategory mining. We then train an individual model for each subcategory rather than attempt to represent an object category with a monolithic model. More specifically, we build the instance affinity graph by combining both intraclass similarity and inter-class ambiguity. Visual subcategories, which correspond to the dense subgraphs, are detected by the graph shift algorithm and seamlessly integrated into the state-of-the-art detection assisted classification framework. Finally the responses from subcategory models are aggregated by subcategory-aware kernel regression. The extensive experiments over the PASCAL VOC 2007 and PASCAL VOC 2010 databases show the state-ofthe-art performance from our framework.
[1] O. Aghazadeh, H. Azizpour, J. Sullivan, and S. Carlsson. Mixture component identification and learning for visual recognition. In ECCV. 2012.
[2] I. M. Bomze. Branch-and-bound approaches to standard quadratic optimization problems. J. of Global Optimization, 2002.
[3] L. D. Bourdev, S. Maji, T. Brox, and J. Malik. Detecting people using mutually consistent poselet activations. In ECCV, 2010.
[4] K. Chatfield, V. Lempitsky, and A. Vedaldi. The devil is in the details: an evaluation of recent feature encoding methods. In BMVC, 201 1.
[5] Q. Chen, Z. Song, Y. Hua, Z. Huang, and S. Yan. Hierarchical matching with side information for image classification. In CVPR, 2012.
[6] D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature space analysis. TPAMI, 2002.
[7] J. Dai, J. Feng, and J. Zhou. Subordinate class recognition using relational object models. In ICPR, 2012.
[8] J. Dai, S. Yan, X. Tang, and J. T. Kwok. Locally adaptive classification piloted by uncertainty. In ICML, 2006.
[10] S. K. Divvala, A. A. Efros, and M. Hebert. How important are ”deformable parts” in the deformable parts model? In ECCV Workshops, 2012.
[11] S. K. Divvala, A. A. Efros, and M. Hebert. Object instance sharing by enhanced bounding box correspondence. In BMVC, 2012.
[12] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The PASCAL Visual Object Classes Challenge 2010 (VOC2010) Results.
[13] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The pascal visual object classes (voc) challenge. IJCV, 2010.
[14] L. Fei-Fei and P. Perona. A bayesian hierarchical model for learning natural scene categories. In CVPR, 2005.
[15] P. F. Felzenszwalb, R. B. Girshick, and D. McAllester. Discriminatively trained deformable part models, release 4.
[16] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object Detection with Discriminatively Trained Part-Based Models. TPAMI, 2010.
[17] J. S. Florent Perronnin and T. Mensink. Improving the Fisher Kernel for LargeScale Image Classification. In ECCV, 2010.
[18] C. Gu, P. A. Arbel ´aez, Y. Lin, K. Yu, and J. Malik. Multi-component models for object detection. In ECCV, 2012.
[19] C. Gu and X. Ren. Discriminative mixture-of-templates for viewpoint classification. In ECCV, 2010.
[20] H. Hajishirzi, M. Rastegari, A. Farhadi, and J. Hodgins. Understanding of proffesional soccer commentaries. In UAI, 2012.
[21] H. Harzallah, F. Jurie, and C. Schmid. Combining efficient object localization and image classification. In ICCV, 2009.
[22] T.-K. Kim and J. Kittler. Locally linear discriminant analysis for multimodally distributed classes for face recognition with a single model image. TPAMI, 2005.
[23] S. Lazebnik, C. Schmid, and J. Ponce. Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories. In CVPR, 2006.
[24] F. Li, J. Carreira, and C. Sminchisescu. Object recognition as ranking holistic figure-ground hypotheses. In CVPR, 2010.
[25] H. Liu and S. Yan. Robust graph mode seeking by graph shift. In ICML, 2010.
[26] D. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 2004.
[27] T. Malisiewicz, A. Gupta, and A. A. Efros. Ensemble of exemplar-svms for object detection and beyond. In ICCV, 2011.
[28] T. Ojala, M. Pietik¨ ainen, and D. Harwood. A comparative study of texture measures with classification based on featured distributions. Pattern Recognition, 1996.
[29] D. Park, D. Ramanan, and C. Fowlkes. Multiresolution models for object detection. In ECCV, 2010.
[30] O. Russakovsky, Y. Lin, K. Yu, and L. Fei-Fei. Object-centric spatial pooling for image classification. In ECCV, 2012.
[31] Z. Song, Q. Chen, Z. Huang, Y. Hua, and S. Yan. Contextualizing object detection and classification. In CVPR, 2011.
[32] M. Toussaint and S. Vijayakumar. Learning discontinuities with products-ofsigmoids for switching between local models. In ICML, 2005.
[33] K. E. A. van de Sande, J. R. R. Uijlings, T. Gevers, and A. W. M. Smeulders. Segmentation as selective search for object recognition. In ICCV, 2011.
[34] A. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman. Multiple kernels for object detection. In ICCV, 2009.
[35] J. Wang, J. Yang, K. Yu, F. Lv, and T. Huang. Locality-constrained linear coding for image classification. In CVPR, 2010.
[36] J. Weibull. Evolutionary game theory. MIT press, 1997.
[37] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba. Sun database: Large-scale scene recognition from abbey to zoo. In CVPR, 2010.
[38] L. Zhu, Y. Chen, A. L. Yuille, and W. T. Freeman. Latent hierarchical structural learning for object detection. In CVPR, 2010.
[39] X. Zhu, C. Vondrick, D. Ramanan, and C. Fowlkes. Do we need more training data or better models for object detection? In BMVC, 2012. 8 8 83 3 34 2 2