cvpr cvpr2013 cvpr2013-409 cvpr2013-409-reference knowledge-graph by maker-knowledge-mining
Source: pdf
Author: Antony Lam, Imari Sato
Abstract: Hyperspectral reflectance data allows for highly accurate spectral relighting under arbitrary illumination, which is invaluable to applications ranging from archiving cultural e-heritage to consumer product design. Past methods for capturing the spectral reflectance of scenes has proven successful in relighting but they all share a common assumption. All the methods do not consider the effects of fluorescence despite fluorescence being found in many everyday objects. In this paper, we describe the very different ways that reflectance and fluorescence interact with illuminants and show the need to explicitly consider fluorescence in the relighting problem. We then propose a robust method based on well established theories of reflectance and fluorescence for imaging each of these components. Finally, we show that we can relight real scenes of reflective-fluorescent surfaces with much higher accuracy in comparison to only considering the reflective component.
[1] M. Alterman, Y. Schechner, and A. Weiss. Multiplexed fluorescence unmixing. In ICCP10, pages 1–8, 2010. 2
[2] K. Barnard. Color constancy with fluorescent surfaces. In CIC, pages 257–261. IS&T;/SID, 1999. 1, 2
[3] C. Chi, H. Yoo, and M. Ben-Ezra. Multi-spectral imaging by optimized wide band illumination. IJCV, 86(2-3): 140–15 1, Jan. 2010. 1, 2
[4] J. M. DiCarlo, F. Xiao, and B. A. Wandell. Illuminating illumination. In CIC, pages 27–34. IS&T;/SID, 2001. 1
[5] N. Gat. Imaging spectroscopy using tunable filters: A review. In Wavelet Applications VII, volume 4056, pages 50– 64. SPIE, 2000. 2
[6] M. B. Hullin, J. Hanika, B. Ajdin, H.-P. Seidel, J. Kautz, and H. P. A. Lensch. Acquisition and analysis of bispectral bidi-
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15] rectional reflectance and reradiation distribution functions. SIGGRAPH 2010, 29(4):97: 1–97:7, 2010. 2, 4 G. M. Johnson and M. D. Fairchild. Full-spectral color calculations in realistic image synthesis. IEEE Comput. Graph. Appl., 19(4):47–53, July 1999. 1 T.-W. Lee, T. Wachtler, and T. J. Sejnowski. The spectral independent components of natural scenes. In First IEEE Intl. Workshop on Biologically Motivated Computer Vision, BMVC ’00, pages 527–534, London, UK, 2000. SpringerVerlag. 4 L. T. Maloney. Evaluation of linear models of surface spectral reflectance with small numbers of parameters. JOSA A, 3(10): 1673–1683, Oct 1986. 4 L. T. Maloney and B. A. Wandell. Color constancy: a method for recovering surface spectral reflectance. JOSA A, 3(1):29+, 1986. 1, 2 D. H. Marimont and B. A. Wandell. Linear models of surface and illuminant spectra. JOSA A, 9(11): 1905–1913, Nov 1992. 4 W. Matusik, H. Pfister, M. Brand, and L. McMillan. Efficient isotropic BRDF measurement. In EGRW, pages 241–247, Aire-la-Ville, Switzerland, Switzerland, 2003. Eurographics Association. 4 G. McNamara, A. Gupta, J. Reynaert, T. D. Coates, and C. Boswell. Spectral imaging microscopy web sites and data. Cytometry, 69A(8):863–871, 2006. 4 J. Park, M. Lee, M. D. Grossberg, and S. K. Nayar. Multispectral Imaging Using Multiplexed Illumination. In ICCV. IEEE, Oct 2007. 1, 2 J. P. S. Parkkinen, J. Hallikainen, and T. Jaaskelainen. Characteristic spectra of munsell colors. JOSA A, 6:3 18–322,
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25] 1989. 4 M. S. Peercy. Linear color representations for full spectral rendering. In SIGGRAPH-93, pages 191–198, Anaheim, CA, 1993. 1 F. W. Rost. Fluorescence Microscopy. Cambridge University Press, 1992. 1 I. Sato, T. Okabe, and Y. Sato. Bispectral photometric stereo based on fluorescence. In CVPR, pages 270–277. IEEE, 2012. 3 D. A. Skoog, F. J. Holler, and S. R. Crouch. Principles of Instrumental Analysis. Thomson Publishers, 2007. 1 A. Springsteen. Introduction to measurement of color of fluorescent materials. Analytica Chimica Acta, 380(2–3): 183– 192, 1999. 2 S. Tominaga. Multichannel vision system for estimating surface and illumination functions. JOSA A, 13(1 1):2163–2173, Nov 1996. 1, 2 S. Tominaga, T. Horiuchi, and T. Kamiyama. Spectral estimation of fluorescent objects using visible lights and an imaging device. In CIC. IS&T;/SID, 2011. 2 T. Treibitz, Z. Murez, B. G. Mitchell, and D. J. Kriegman. Shape from fluorescence. In ECCV (7), pages 292–306, 2012. 3 G. Ward and E. Eydelberg-Vileshin. Picture perfect RGB rendering using spectral prefiltering and sharp color primaries. In EGRW, pages 117–124, Aire-la-Ville, Switzerland, Switzerland, 2002. Eurographics Association. 1 F. Yasuma, T. Mitsunaga, D. Iso, and S. Nayar. Generalized Assorted Pixel Camera: Post-Capture Control of Resolution, Dynamic Range and Spectrum. Technical report, Columbia University, Nov 2008. 6
[26] C. Zhang and I. Sato. Separating reflective and fluorescent components of an image. In CVPR, pages 185–192. IEEE, 2011. 2, 3 111444555977