cvpr cvpr2013 cvpr2013-376 cvpr2013-376-reference knowledge-graph by maker-knowledge-mining

376 cvpr-2013-Salient Object Detection: A Discriminative Regional Feature Integration Approach


Source: pdf

Author: Huaizu Jiang, Jingdong Wang, Zejian Yuan, Yang Wu, Nanning Zheng, Shipeng Li

Abstract: Salient object detection has been attracting a lot of interest, and recently various heuristic computational models have been designed. In this paper, we regard saliency map computation as a regression problem. Our method, which is based on multi-level image segmentation, uses the supervised learning approach to map the regional feature vector to a saliency score, and finally fuses the saliency scores across multiple levels, yielding the saliency map. The contributions lie in two-fold. One is that we show our approach, which integrates the regional contrast, regional property and regional backgroundness descriptors together to form the master saliency map, is able to produce superior saliency maps to existing algorithms most of which combine saliency maps heuristically computed from different types of features. The other is that we introduce a new regional feature vector, backgroundness, to characterize the background, which can be regarded as a counterpart of the objectness descriptor [2]. The performance evaluation on several popular benchmark data sets validates that our approach outperforms existing state-of-the-arts.


reference text

[1] R. Achanta, S. S. Hemami, F. J. Estrada, and S. S ¨usstrunk. Frequency-tuned salient region detection. In CVPR, pages 1597–1604, 2009.

[2] B. Alexe, T. Deselaers, and V. Ferrari. What is an object? In CVPR, pages 73–80, 2010.

[3] S. Alpert, M. Galun, R. Basri, and A. Brandt. Image segmentation by probabilistic bottom-up aggregation and cue 222000888977

[4]

[5]

[6]

[7] integration. In CVPR, 2007. D. Batra, A. Kowdle, D. Parikh, J. Luo, and T. Chen. icoseg: Interactive co-segmentation with intelligent scribble guidance. In CVPR, pages 3169–3176. IEEE, 2010. A. Borji. Boosting bottom-up and top-down visual features for saliency estimation. In CVPR, pages 438–445, 2012. A. Borji and L. Itti. Exploiting local and global patch rarities for saliency detection. In CVPR, pages 478–485, 2012. A. Borji and L. Itti. State-of-the-art in visual attention modeling. IEEE Trans. Pattern Anal. Mach. Intell. , To Appear.

[8] A. Borji, D. N. Sihite, and L. Itti. Probabilistic learning of task-specific visual attention. In CVPR, pages 470–477, 2012.

[9] A. Borji, D. N. Sihite, and L. Itti. Salient object detection: A benchmark. In ECCV (2), pages 414–429, 2012.

[10] K.-Y. Chang, T.-L. Liu, H.-T. Chen, and S.-H. Lai. Fusing generic objectness and visual saliency for salient object detection. In ICCV, pages 914–921 , 2011.

[11] M.-M. Cheng, G.-X. Zhang, N. J. Mitra, X. Huang, and S.M. Hu. Global contrast based salient region detection. In CVPR, pages 409–416, 2011 .

[12] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient graphbased image segmentation. International Journal of Computer Vision, 59(2):167–181, 2004.

[13] J. Feng, Y. Wei, L. Tao, C. Zhang, and J. Sun. Salient object detection by composition. In ICCV, pages 1028–1035, 2011.

[14] B. Fernando, E´. Fromont, D. Muselet, and M. Sebban. Discriminative feature fusion for image classification. In CVPR, pages 3434–3441 , 2012.

[15] D. Gao, V. Mahadevan, and N. Vasconcelos. The discriminant center-surround hypothesis for bottom-up saliency. In NIPS, 2007.

[16] D. Gao and N. Vasconcelos. Bottom-up saliency is a discriminant process. In ICCV, pages 1–6, 2007.

[17] S. Goferman, A. Tal, and L. Zelnik-Manor. Puzzle-like collage. Comput. Graph. Forum, 29(2) :459–468, 2010.

[18] S. Goferman, L. Zelnik-Manor, and A. Tal. Context-aware saliency detection. In CVPR, pages 2376–2383, 2010.

[19] D. Hoiem, A. A. Efros, and M. Hebert. Geometric context from a single image. In ICCV, pages 654–661 , 2005.

[20] X. Hou and L. Zhang. Saliency detection: A spectral residual approach. In CVPR, 2007.

[21] L. Itti. Automatic foveation for video compression using a neurobiological model of visual attention. IEEE Transactions on Image Processing, 13(10) :1304–1318, 2004.

[22] L. Itti, C. Koch, and E. Niebur. A model of saliencybased visual attention for rapid scene analysis. IEEE Trans.

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35] PAMI., 20(11):1254–1259, 1998. H. Jiang, J. Wang, Z. Yuan, T. Liu, N. Zheng, and S. Li. Automatic salient object segmentation based on context and shape prior. In British Machine Vision Conference (BMVC), 2011. T. Judd, F. Durand, and A. Torralba. A benchmark of computational models of saliency to predict human fixations. Technical report, MIT-CSAIL-TR-2012-001, 2012. C. Kanan and G. W. Cottrell. Robust classification of objects, faces, and flowers using natural image statistics. In CVPR, pages 2472–2479, 2010. P. Khuwuthyakorn, A. Robles-Kelly, and J. Zhou. Object of interest detection by saliency learning. In ECCV (2), pages 636–649, 2010. D. A. Klein and S. Frintrop. Center-surround divergence of feature statistics for salient object detection. In ICCV, pages 2214–2219, 2011. C. Kocn and S. Ullman. Shifts in selective visual attention: towards the underlying neural circuitry. Human Neurobiology, 4(4):219–227, 1985. C. Lang, G. Liu, J. Yu, and S. Yan. Saliency detection by multitask sparsity pursuit. IEEE Transactions on Image Processing, 21(3):1327–1338, 2012. C. Lang, T. V. Nguyen, H. Katti, K. Yadati, M. S. Kankanhalli, and S. Yan. Depth matters: Influence of depth cues on visual saliency. In ECCV (2), pages 101–1 15, 2012. T. Liu, Z. Yuan, J. Sun, J. Wang, N. Zheng, X. Tang, and H.-Y. Shum. Learning to detect a salient object. IEEE Trans. Pattern Anal. Mach. Intell. , 33(2) :353–367, 2011. S. Lu and J.-H. Lim. Saliency modeling from image histograms. In ECCV (7), pages 321–332, 2012. Y. Lu, W. Zhang, C. Jin, and X. Xue. Learning attention map from images. In CVPR, pages 1067–1074, 2012. Y. Lu, W. Zhang, H. Lu, and X. Xue. Salient object detection using concavity context. In ICCV, pages 233–240, 2011. L. Marchesotti, C. Cifarelli, and G. Csurka. A framework for

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49] visual saliency detection with applications to image thumbnailing. In ICCV, pages 2232–2239, 2009. P. Mehrani and O. Veksler. Saliency segmentation based on learning and graph cut refinement. In British Machine Vision Conference (BMVC), 2010. Y. Niu, Y. Geng, X. Li, and F. Liu. Leveraging stereopsis for saliency analysis. In CVPR, pages 454–461 , 2012. F. Perazzi, P. Kr ¨ahenb u¨hl, Y. Pritch, and A. Hornung. Saliency filters: Contrast based filtering for salient region detection. In CVPR, pages 733–740, 2012. E. Rahtu, J. Kannala, and M. B. Blaschko. Learning a category independent object detection cascade. In ICCV, pages 1052–1059, 2011 . B. Schauerte and R. Stiefelhagen. Quaternion-based spectral saliency detection for eye fixation prediction. In ECCV (2), pages 1 16–129, 2012. X. Shen and Y. Wu. A unified approach to salient object detection via low rank matrix recovery. In CVPR, pages 853–860, 2012. X. Sun, H. Yao, and R. Ji. What are we looking for: Towards statistical modeling of saccadic eye movements and visual saliency. In CVPR, pages 1552–1559, 2012. A. Treisman and G. Gelad. A feature-integration theory of attention. Cognitive Psychology, 12(1) :97–136, 1980. R. Valenti, N. Sebe, and T. Gevers. Image saliency by isocentric curvedness and color. In ICCV, pages 2185–2192, 2009. S. Vicente, V. Kolmogorov, and C. Rother. Graph cut based image segmentation with connectivity priors. In CVPR, 2008. D. Walther and C. Koch. Modeling attention to salient proto-objects. Neural Networks, 19(9) :1395–1407, 2006. J. Wang, L. Quan, J. Sun, X. Tang, and H.-Y. Shum. Picture collage. In CVPR (1), pages 347–354, 2006. L. Wang, J. Xue, N. Zheng, and G. Hua. Automatic salient object extraction with contextual cue. In ICCV, pages 105– 112, 2011. M. Wang, J. Konrad, P. Ishwar, K. Jing, and H. A. Row-

[50]

[51]

[52]

[53]

[54] ley. Image saliency: From intrinsic to extrinsic context. In CVPR, pages 417–424, 2011. P. Wang, J. Wang, G. Zeng, J. Feng, H. Zha, and S. Li. Salient object detection for searched web images via global saliency. In CVPR, pages 3194–3201 , 2012. P. Wang, D. Zhang, J. Wang, Z. Wu, X.-S. Hua, and S. Li. Color filter for image search. In A CM Multimedia, pages 1327–1328, 2012. P. Wang, D. Zhang, G. Zeng, and J. Wang. Contextual dominant color name extraction for web image search. In ICME Workshops, pages 319–324, 2012. Y. Wei, F. Wen, W. Zhu, and J. Sun. Geodesic saliency using background priors. In ECCV (3), pages 29–42, 2012. J. Yang and M.-H. Yang. Top-down visual saliency via joint crf and dictionary learning. In CVPR, pages 2296–2303, 2012. 222000889088