cvpr cvpr2013 cvpr2013-363 cvpr2013-363-reference knowledge-graph by maker-knowledge-mining
Source: pdf
Author: Junjie Yan, Xucong Zhang, Zhen Lei, Shengcai Liao, Stan Z. Li
Abstract: The serious performance decline with decreasing resolution is the major bottleneck for current pedestrian detection techniques [14, 23]. In this paper, we take pedestrian detection in different resolutions as different but related problems, and propose a Multi-Task model to jointly consider their commonness and differences. The model contains resolution aware transformations to map pedestrians in different resolutions to a common space, where a shared detector is constructed to distinguish pedestrians from background. For model learning, we present a coordinate descent procedure to learn the resolution aware transformations and deformable part model (DPM) based detector iteratively. In traffic scenes, there are many false positives located around vehicles, therefore, we further build a context model to suppress them according to the pedestrian-vehicle relationship. The context model can be learned automatically even when the vehicle annotations are not available. Our method reduces the mean miss rate to 60% for pedestrians taller than 30 pixels on the Caltech Pedestrian Benchmark, which noticeably outperforms previous state-of-the-art (71%).
[1] A. Bar-Hillel, D. Levi, E. Krupka, and C. Goldberg. Part-based feature synthesis for human detection. ECCV, 2010. 7
[2] O. Barinova, V. Lempitsky, and P. Kholi. On detection of multiple object instances using hough transforms. PAMI, 2012. 2
[3] C. Beleznai and H. Bischof. Fast human detection in crowded scenes by contour integration and local shape estimation. In CVPR. IEEE, 2009. 2
[4] R. Benenson, M. Mathias, R. Timofte, and L. Van Gool. Pedestrian detection at 100 frames per second. In CVPR. IEEE, 2012. 1, 2
[5] S. Biswas, K. W. Bowyer, and P. J. Flynn. Multidimensional scaling for matching low-resolution face images. PAMI, 2012. 2
[6] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR. IEEE, 2005. 1, 2, 7
[7] N. Dalal, B. Triggs, and C. Schmid. Human detection using oriented histograms of flow and appearance. ECCV, 2006. 2
[8] C. Desai, D. Ramanan, and C. Fowlkes. Discriminative models for multi-class object layout. IJCV, 2011. 2
[9] Y. Ding and J. Xiao. Contextual boost for pedestrian detection. In CVPR. IEEE, 2012. 2, 7
[10] P. Doll a´r, R. Appel, and W. Kienzle. Crosstalk cascades for frame-rate pedestrian detection. In ECCV. Springer, 2012. 1, 2
[11] P. Doll a´r, S. Belongie, and P. Perona. The fastest pedestrian detector in the west. BMVC 2010, 2010. 1, 2, 7
[12] P. Doll a´r, Z. Tu, P. Perona, and S. Belongie. Integral channel features. In BMVC, 2009. 2, 7
[13] P. Doll ´ar, Z. Tu, H. Tao, and S. Belongie. Feature mining for image classification. In CVPR. IEEE, 2007. 7
[14] P. Doll a´r, C. Wojek, B. Schiele, and P. Perona. Pedestrian detection: An evaluation of the state of the art. TPAMI, 2012. 1, 2, 3, 6, 7
[15] C. Dubout and F. Fleuret. Exact acceleration of linear object detectors. ECCV, 2012. 7
[16] M. Enzweiler and D. Gavrila. Monocular pedestrian detection: Survey and experiments. TPAMI, 2009. 2
[17] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The pascal voc 2012 results. 5
[18] P. Felzenszwalb, R. Girshick, and D. McAllester. Cascade object detection with deformable part models. In CVPR. IEEE, 2010. 1, 2
[19] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained part-based models. TPAMI, 2010. 1, 2, 3, 4, 7
[20] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? the kitti vision benchmark suite. In CVPR. IEEE, 2012. 5
[21] D. Geronimo, A. Lopez, A. Sappa, and T. Graf. Survey of pedestrian detection for advanced driver assistance systems. PAMI, 2010. 2
[22] R. B. Girshick, P. F. Felzenszwalb, and D. McAllester. Discriminatively trained deformable part models, release 5. http://people.cs.uchicago.edu/ rbg/latentrelease5/. 4
[23] D. Hoiem, Y. Chodpathumwan, and Q. Dai. Diagnosing error in object detectors. ECCV, 2012. 1, 2
[24] D. Hoiem, A. Efros, and M. Hebert. Putting objects in perspective. IJCV, 2008. 2
[25] C. Huang and R. Nevatia. High performance object detection by collaborative learning of joint ranking of granules features. In CVPR. IEEE, 2010. 1, 2
[26] A. Khosla, T. Zhou, T. Malisiewicz, A. A. Efros, and A. Torralba. Undoing the damage of dataset bias. In ECCV. Springer, 2012. 2
[27] B. Kulis, K. Saenko, and T. Darrell. What you saw is not what you get: Domain adaptation using asymmetric kernel transforms. In CVPR. IEEE, 2011. 2
[28] Z. Lei and S. Z. Li. Coupled spectral regression for matching heterogeneous faces. In CVPR. IEEE, 2009. 2
[29] C. Li, D. Parikh, and T. Chen. Automatic discovery of groups of objects for scene understanding. In CVPR. IEEE, 2012. 2
[30] Z. Lin and L. Davis. A pose-invariant descriptor for human detection and segmentation. ECCV, 2008. 7
[31] S. Maji, A. Berg, and J. Malik. Classification using intersection kernel support vector machines is efficient. In CVPR. IEEE, 2008. 1, 7
[32] C. Papageorgiou and T. Poggio. A trainable system for object detection. IJCV, 2000. 2
[33] D. Park, D. Ramanan, and C. Fowlkes. Multiresolution models for object detection. ECCV, 2010. 1, 2, 5, 7
[34] H. Pirsiavash and D. Ramanan. Steerable part models. In CVPR. IEEE, 2012. 2
[35] H. Pirsiavash, D. Ramanan, and C. Fowlkes. Bilinear classifiers for visual recognition. In NIPS, 2009. 2
[36] M. Sadeghi and A. Farhadi. Recognition using visual phrases. In CVPR, 2011. 2
[37] W. Schwartz, A. Kembhavi, D. Harwood, and L. Davis. Human detection using partial least squares analysis. In ICCV. IEEE, 2009. 7
[38] S. Tang, M. Andriluka, and B. Schiele. Detection and tracking of occluded people. In BMVC, 2012. 2
[39] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for structured and interdependent output variables. JMLR, 2006. 5
[40] P. Viola, M. Jones, and D. Snow. Detecting pedestrians using patterns of motion and appearance. IJCV, 2005. 1, 2, 7
[41] S. Walk, N. Majer, K. Schindler, and B. Schiele. New features and insights for pedestrian detection. In CVPR. IEEE, 2010. 1, 2
[42] M. Wang, W. Li, and X. Wang. Transferring a generic pedestrian detector towards specific scenes. In CVPR. IEEE, 2012. 2
[43] X. Wang, T. Han, and S. Yan. An hog-lbp human detector with partial occlusion handling. In ICCV. IEEE, 2009. 1, 2, 7
[44] C. Wojek and B. Schiele. A performance evaluation of single and multi-feature people detection. DAGM, 2008. 7
[45] C. Wojek, S. Walk, and B. Schiele. Multi-cue onboard pedestrian detection. In CVPR. IEEE, 2009. 2
[46] J. Yan, Z. Lei, D. Yi, and S. Z. Li. Multi-pedestrian detection in crowded scenes: A global view. In CVPR. IEEE, 2012. 2 333000334088