cvpr cvpr2013 cvpr2013-352 cvpr2013-352-reference knowledge-graph by maker-knowledge-mining
Source: pdf
Author: Armand Joulin, Sing Bing Kang
Abstract: An anaglyph is a single image created by selecting complementary colors from a stereo color pair; the user can perceive depth by viewing it through color-filtered glasses. We propose a technique to reconstruct the original color stereo pair given such an anaglyph. We modified SIFT-Flow and use it to initially match the different color channels across the two views. Our technique then iteratively refines the matches, selects the good matches (which defines the “anchor” colors), and propagates the anchor colors. We use a diffusion-based technique for the color propagation, and added a step to suppress unwanted colors. Results on a variety of inputs demonstrate the robustness of our technique. We also extended our method to anaglyph videos by using optic flow between time frames.
[1] Y. Bando, B. Chen, and T. Nishita. Extracting depth and matte using a color-filtered aperture. ACM Transactions on Graphics, 27(5):134, 2008. 2, 6
[2] A. Y.-S. Chia, S. Zhuo, R. K. Gupta, Y.-W. Tai, S.-Y. Cho, P. Tan, and S. Lin. Semantic colorization with internet im-
[3]
[4]
[5]
[6]
[7]
[8] ages. ACM Transactions on Graphics, Dec. 2011. 4 H. G. Dietz. Reprocessing anaglyph images. In SPIE EI, 2012. 1 W. Dong, G. Bao, X. Zhang, and J.-C. Paul. Fast local color transfer via dominant colors mapping. In ACM SIGGRAPH Asia, 2010. 2 Y. HaCohen, E. Shechtman, D. B. Goldman, and D. Lischinski. Non-rigid dense correspondence with applications for image enhancement. ACM SIGGRAPH, 30(4):70: 1–70:9, 2011. 2, 3, 4 Y. Heo, K. Lee, and S. Lee. Illumination and camera invariant stereo matching. In CVPR, pages 1–8, 2008. 2 H. Hirschmuller. Stereo processing by semiglobal matching and mutual information. IEEE TPAMI, 30(2):328–341, Feb. 2008. 2 T. Horiuchi and S. Hirano. Colorization algorithm for grayscale image by propagating seed pixels. In ICIP, 2003. 4
[9] R. Irony, D. Cohen-Or, and D. Lischinski. Colorization by example. Eurographics Symp. on Rendering, 2005. 2
[10] J. Kim, V. Kolmogorov, and R. Zabih. Visual correspondence using energy minimization and mutual information. In ICCV, 2003. 2, 3, 4
[11] A. Levin, D. Lischinski, and Y. Weiss. Colorization using optimization. In ACM SIGGRAPH, 2004. 1, 2, 4, 5, 7
[12] Y. Li, E. Adelson, and A. Agarwala. Scribbleboost: Adding classification to edge-aware interpolation of local image and video adjustments. Computer Graphics Forum, 27(4), 2008. 2
[13] C. Liu. Beyond Pixels: Exploring New Representations and Applications for Motion Analysis. MIT, Dept. of EECS,
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22] 2009. 2 C. Liu, J. Yuen, A. Torralba, J. Sivic, and W. T. Freeman. Sift flow: Dense correspondence across different scenes. In ECCV, 2008. 1, 2, 3, 7 Q. Luan, F. Wen, D. Cohen-Or, L. Liang, Y.-Q. Xu, and H.Y. Shum. Natural image colorization. In Eurographics Symp. on Rendering, June 2007. 2 I. Omer and M. Werman. Color lines: image specific color representation. In CVPR, pages 946–953, 2004. 2 F. Pitie and A. Kokaram. The linear monge-kantorovitch linear colour mapping for example-based colour transfer. In IET CVMP, 2007. 2 E. Reinhard, M. Ashikhmin, B. Gooch, and P. Shirley. Color transfer between images. IEEE CG&A;, 2001 . 2 D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. IJCV, 47(1):742, May 2002. 2 T. Welsh, M. Ashikhmin, and K. Mueller. Transferring color to greyscale images. In ACM SIGGRAPH, 2002. 2 X. Xiao and L. Ma. Color transfer in correlated color space. In VRCIA, 2006. 2 L. Yatziv, G. Sapiro, R. Lukac, and K. N. Plataniotis. Image and video colorization. In Color Image Processing: Methods and Applications. CRC/Taylor and Francis, 2006. 2, 4 222999666