cvpr cvpr2013 cvpr2013-325 cvpr2013-325-reference knowledge-graph by maker-knowledge-mining

325 cvpr-2013-Part Discovery from Partial Correspondence


Source: pdf

Author: Subhransu Maji, Gregory Shakhnarovich

Abstract: We study the problem of part discovery when partial correspondence between instances of a category are available. For visual categories that exhibit high diversity in structure such as buildings, our approach can be used to discover parts that are hard to name, but can be easily expressed as a correspondence between pairs of images. Parts naturally emerge from point-wise landmark matches across many instances within a category. We propose a learning framework for automatic discovery of parts in such weakly supervised settings, and show the utility of the rich part library learned in this way for three tasks: object detection, category-specific saliency estimation, and fine-grained image parsing.


reference text

[1] L. Bourdev, S. Maji, T. Brox, and J. Malik. Detecting people using mutually consistent poselet activations. In ECCV, 2010. 2, 5

[2] L. Bourdev and J. Malik. Poselets:body part detectors trained using 3D human pose annotations. In ICCV, 2009. 2

[3] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, 2005. 3

[4] C. Doersch, S. Singh, A. Gupta, J. Sivic, and A. A. Efros. What makes Paris look like Paris? In ACM SIGGRAPH, 2012. 2

[5] K. Duan, I. Bloomington, D. Parikh, and K. Grauman. Discovering localized attributes for fine-grained recognition. In CVPR, 2012. 2

[6] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The Pascal Visual Object Classes (VOC) challenge. IJCV, 88(2), jun. 2010. 5

[7] A. Farhadi, I. Endres, and D. Hoiem. Attribute-centric recognition for cross-category generalization. In CVPR, 2010. 2

[8] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained partbased models. IEEE TPAMI, 32(9), 2010. 2, 5

[9] P. F. Felzenszwalb and D. P. Huttenlocher. Pictorial structures for object recognition. IJCV, 61, January 2005. 2

[10] R. B. Girshick, P. F. Felzenszwalb, and D. McAllester. Discriminatively trained deformable part models, release 5. http://people.cs.uchicago.edu/ rbg/latent-release5/. 5

[11] B. Hariharan, J. Malik, and D. Ramanan. Discriminative decorrelation for clustering and classification. In ECCV, 2012. 4

[12] L. Itti and C. Koch. Computational modelling of visual attention. Nature reviews neuroscience, 2(3), 2001 . 6

[13] B. Leibe, A. Leonardis, and B. Schiele. Robust object detection with interleaved categorization and segmentation. IJCV, 77(1), 2008. 5

[14] D. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 60(2), 2004. 2, 3

[15] S. Maji and G. Shakhnarovich. Part annotations via pairwise correspondence. In Workshop on Human Computation,

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23] AAAI, 2012. 2, 3 T. Malisiewicz, A. Gupta, and A. A. Efros. Ensemble of exemplar-SVMs for object detection and beyond. In ICCV, 2011. 3 J. Mutch and D. G. Lowe. Multiclass object recognition with sparse, localized features. In CVPR, 2006. 2 D. Parikh and K. Grauman. Interactive discovery of taskspecic nameable attributes. In Workshop on Fine-Grained Visual Categorization, CVPR, 2011. 2 S. Singh, A. Gupta, and A. Efros. Unsupervised discovery of mid-level discriminative patches. In ECCV, 2012. 2, 4, 6 C. Strecha, A. Bronstein, M. Bronstein, and P. Fua. LDAHash: Improved matching with smaller descriptors. IEEE PAMI, 34(1), 2012. 2 M. Weber, M. Welling, and P. Perona. Towards automatic discovery of object categories. In CVPR, 2000. 2 M. Weber, M. Welling, and P. Perona. Unsupervised learning of models for recognition. In ECCV, 2000. 2 J. Xiao, J. Hays, K. Ehinger, A. Oliva, and A. Torralba. SUN database: Large-scale scene recognition from abbey to zoo. In CVPR, 2010. 7 999993333388666