cvpr cvpr2013 cvpr2013-316 cvpr2013-316-reference knowledge-graph by maker-knowledge-mining

316 cvpr-2013-Optical Flow Estimation Using Laplacian Mesh Energy


Source: pdf

Author: Wenbin Li, Darren Cosker, Matthew Brown, Rui Tang

Abstract: In this paper we present a novel non-rigid optical flow algorithm for dense image correspondence and non-rigid registration. The algorithm uses a unique Laplacian Mesh Energy term to encourage local smoothness whilst simultaneously preserving non-rigid deformation. Laplacian deformation approaches have become popular in graphics research as they enable mesh deformations to preserve local surface shape. In this work we propose a novel Laplacian Mesh Energy formula to ensure such sensible local deformations between image pairs. We express this wholly within the optical flow optimization, and show its application in a novel coarse-to-fine pyramidal approach. Our algorithm achieves the state-of-the-art performance in all trials on the Garg et al. dataset, and top tier performance on the Middlebury evaluation.


reference text