cvpr cvpr2013 cvpr2013-315 cvpr2013-315-reference knowledge-graph by maker-knowledge-mining
Source: pdf
Author: Cewu Lu, Jiaping Shi, Jiaya Jia
Abstract: Online dictionary learning is particularly useful for processing large-scale and dynamic data in computer vision. It, however, faces the major difficulty to incorporate robust functions, rather than the square data fitting term, to handle outliers in training data. In thispaper, wepropose a new online framework enabling the use of ?1 sparse data fitting term in robust dictionary learning, notably enhancing the usability and practicality of this important technique. Extensive experiments have been carried out to validate our new framework.
[1] Usps handwritten digits dataset. www-i6.informatik.rwthaachen.de/.
[2] M. Aharon, M. Elad, and A. Bruckstein. K-svd: An algorithm for designing overcomplete dictionaries for sparse 444121991 (a) (b) (c) (d) (e) (f) (g) (h) Figure 11. Comparison of background subtraction. (a) inputs; (b) our results using online dictionary update; (c) results of [19] using an ?1-norm data fitting term; (d) sparse coding and dictionary update with the ?2-norm data fitting term; (e) ground truth foreground masks; (f)-(h) foreground masks corresponding to (b)-(d). VideosOcean manWater ObjectRain Car PreRecF-scorePreRecF-scorePreRecF-score MairBOaRl eD tLaLl.[8]0 . 8673156451270 . 8 719548128 0 . 7 972 682170 . 76 07351029 0 . 67 21542 5980 . 76 12 125980 . 9 7429834960 0. 7 89 024103 0 . 8 7659437145 Table 4. Precision, recall and F-score for the example shown in Fig. 11using different dictionary methods.
[3]
[4]
[5]
[6]
[7]
[8] representation. IEEE Transactions on Signal Processing, 54(1 1):431 1–4322, 2006. N. Bissantz, L. Dmbgen, A. Munk, and B. Stratmann. Convergence analysis of generalized iteratively reweighted least squares algorithms on convex function spaces. SIAM Journal on Optimization, 19: 1828–1845, 2009. V. Cevher, A. Sankaranarayanan, M. Duarte, D. Reddy, R. Baraniuk, and R. Chellappa. Compressive sensing for background subtraction. ECCV, pages 155–168, 2008. J. Huang, X. Huang, and D. N. Metaxas. Learning with dynamic group sparsity. In ICCV, pages 64–71, 2009. Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradientbased learning applied to document recognition. Proceedings of the IEEE, 1998. C. Lu, L. Xu, and J. Jia. Real-time contrast preserving decolorization. In SIGGRAPH ASIA Posters, page 16, 2012. J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18] for matrix factorization and sparse coding. The Journal of Machine Learning Research, 11:19–60, 2010. D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In ICCV, volume 2, pages 416–423, July 2001. G. Peyre. Sparse modeling of textures. Journal of Mathematical Imaging and Vision, 34(1): 17–3 1, 2009. M. Protter and M. Elad. Image sequence denoising via sparse and redundant representations. TIP, 19:27–35, 2009. W. Rey. Introduction to robust and quasi-robust statistical methods. Springer-Verlag New York:, 1983. J. Shi, X. Ren, G. Dai, J. Wang, and Z. Zhang. A non-convex relaxation approach to sparse dictionary learning. In CVPR, pages 1809–1816, 2011. Z. Szabo, B. Poczos, and A. Lorincz. Online groupstructured dictionary learning. In CVPR, pages 2865–2872, 2011. A. Wagner, J. Wright, A. Ganesh, Z. Zhou, H. Mobahi, and Y. Ma. Towards a practical face recognition system: Robust alignment and illumination by sparse representation. PAMI, 34(2):372–386, 2012. N. Wang, T. Yao, J. Wang, and D.-Y. Yeung. A probabilistic approach to robust matrix factorization. In ECCV, pages 126–139, 2012. J. Yang, K. Yu, Y. Gong, and T. Huang. Linear spatial pyramid matching using sparse coding for image classification. In CVPR, pages 1794–1801, 2009. B. Zhao, L. Fei-Fei, and E. Xing. Online detection of unusual events in videos via dynamic sparse coding. In CVPR, pages 3313–3320, 2011.
[19] C. Zhao, X. Wang, and W.-K. Cham. Background subtraction via robust dictionary learning. EURASIP Journal on Image and Video Processing, 2011. 444222002