cvpr cvpr2013 cvpr2013-314 cvpr2013-314-reference knowledge-graph by maker-knowledge-mining

314 cvpr-2013-Online Object Tracking: A Benchmark


Source: pdf

Author: Yi Wu, Jongwoo Lim, Ming-Hsuan Yang

Abstract: Object tracking is one of the most important components in numerous applications of computer vision. While much progress has been made in recent years with efforts on sharing code and datasets, it is of great importance to develop a library and benchmark to gauge the state of the art. After briefly reviewing recent advances of online object tracking, we carry out large scale experiments with various evaluation criteria to understand how these algorithms perform. The test image sequences are annotated with different attributes for performance evaluation and analysis. By analyzing quantitative results, we identify effective approaches for robust tracking and provide potential future research directions in this field.


reference text

[1] A. Adam, E. Rivlin, and I. Shimshoni. Robust Fragments-based Tracking using the Integral Histogram. In CVPR, 2006.

[2] N. Alt, S. Hinterstoisser, and N. Navab. Rapid Selection of Reliable Templates for Visual Tracking. In CVPR, 2010.

[3] S. Avidan. Support Vector Tracking. PAMI, 26(8): 1064–1072, 2004.

[4] S. Avidan. Ensemble Tracking. PAMI, 29(2):261–271, 2008. 222444111644 Figure 4. Plots for OCC, SV, and FM subsets. The value appears in the title is the number of sequences in that subset. Only the top 10 trackers are presented for clarity and complete plots are in the supplementary material (best viewed on high-resolution display). figure, the top 10 trackers are presented for clarity and complete plots are in the supplementary material. Figure 6. Performance summary for the trackers initialized with different size of bounding box. AVG (the last one) illustrates the average performance over all trackers for each scale. 222444111755

[5] B. Babenko, M.-H. Yang, and S. Belongie. Visual Tracking with Online Multiple Instance Learning. In CVPR, 2009.

[6] B. Babenko, M.-H. Yang, and S. Belongie. Robust Object Tracking with Online Multiple Instance Learning. PAMI, 33(7): 1619–1632,

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23] 2011. Y. Bai and M. Tang. Robust Tracking via Weakly Supervised Ranking SVM. In CVPR, 2012. S. Baker and I. Matthews. Lucas-Kanade 20 Years On: A Unifying Framework. IJCV, 56(3):221–255, 2004. S. Baker, S. Roth, D. Scharstein, M. J. Black, J. Lewis, and R. Szeliski. A Database and Evaluation Methodology for Optical Flow. In ICCV, 2007. C. Bao, Y. Wu, H. Ling, and H. Ji. Real Time Robust L1 Tracker Using Accelerated Proximal Gradient Approach. In CVPR, 2012. M. J. Black. EigenTracking: Robust Matching and Tracking ofArticulated Objects Using a View-Based Representation. IJCV, 26(1):63– 84, 1998. K. Cannons. A Review of Visual Tracking. Technical Report CSE2008-07, York University, Canada, 2008. R. Collins, X. Zhou, and S. K. Teh. An Open Source Tracking Testbed and Evaluation Web Site. In PETS, 2005. R. T. Collins. Mean-shift Blob Tracking through Scale Space. In CVPR, 2003. R. T. Collins, Y. Liu, and M. Leordeanu. Online Selection of Discriminative Tracking Features. PAMI, 27(10): 1631–1643, 2005. D. Comaniciu, V. Ramesh, and P. Meer. Kernel-Based Object Tracking. PAMI, 25(5):564–577, 2003. N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human Detection. In CVPR, 2005. T. B. Dinh, N. Vo, and G. Medioni. Context Tracker: Exploring Supporters and Distracters in Unconstrained Environments. In CVPR, 2011. J. Fan, X. Shen, and Y. Wu. Scribble Tracker: A Matting-based Approach for Robust Tracking. PAMI, 34(8): 1633–1644, 2012. J. Fan, Y. Wu, and S. Dai. Discriminative Spatial Attention for Robust Tracking. In ECCV, 2010. R. B. Fisher. The PETS04 Surveillance Ground-Truth Data Sets. In PETS, 2004. H. Grabner, M. Grabner, and H. Bischof. Real-Time Tracking via On-line Boosting. In BMVC, 2006. H. Grabner, C. Leistner, and H. Bischof. Semi-supervised On-Line Boosting for Robust Tracking. In ECCV, 2008.

[24] H. Grabner, J. Matas, L. V. Gool, and P. Cattin. Tracking the Invisible: Learning Where the Object Might be. In CVPR, 2010.

[25] G. D. Hager and P. N. Belhumeur. Efficient Region Tracking With Parametric Models of Geometry and Illumination. PAMI, 20(10): 1025–1039, 1998.

[26] S. Hare, A. Saffari, and P. H. S. Torr. Struck: Structured Output Tracking with Kernels. In ICCV, 2011.

[27] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. Exploiting the Circulant Structure of Tracking-by-Detection with Kernels. In ECCV, 2012.

[28] M. Isard and A. Blake. CONDENSATION–Conditional Density Propagation for Visual Tracking. IJCV, 29(1):5–28, 1998.

[29] A. D. Jepson, D. J. Fleet, and T. F. El-Maraghi. Robust Online Appearance Models for Visual Tracking. PAMI, 25(10): 1296–13 11, 2003.

[30] X. Jia, H. Lu, and M.-H. Yang. Visual Tracking via Adaptive Structural Local Sparse Appearance Model. In CVPR, 2012. [3 1] Z. Kalal, J. Matas, and K. Mikolajczyk. P-N Learning: Bootstrapping Binary Classifiers by Structural Constraints. In CVPR, 2010.

[32] J. Kwon and K. M. Lee. Tracking of a Non-Rigid Object via Patchbased Dynamic Appearance Modeling and Adaptive Basin Hopping Monte Carlo Sampling. In CVPR, 2009.

[33] J. Kwon and K. M. Lee. Visual Tracking Decomposition. In CVPR, 2010.

[34] J. Kwon and K. M. Lee. Tracking by Sampling Trackers. In ICCV, 2011.

[35] X. Li, W. Hu, C. Shen, Z. Zhang, A. Dick, and A. Hengel. A Survey of Appearance Models in Visual Object Tracking. TIST, 2013, in press.

[36] B. Liu, J. Huang, L. Yang, and C. Kulikowsk. Robust Tracking using Local Sparse Appearance Model and K-Selection. In CVPR, 2011.

[37] B. D. Lucas and T. Kanade. An Iterative Image Registration Technique with An Application to Stereo Vision. In IJCAI, 1981.

[38] D. R. Martin, C. C. Fowlkes, and J. Malik. Learning to Detect Natural Image Boundaries Using Local Brightness, Color, and Texture Cues. PAMI, 26(5):530–49, 2004.

[39] I. Matthews, T. Ishikawa, and S. Baker. The Template Update Problem. PAMI, 26(6):810–815, 2004.

[40] X. Mei and H. Ling. Robust Visual Tracking using L1 Minimization. In ICCV, 2009.

[41] X. Mei, H. Ling, Y. Wu, E. Blasch, and L. Bai. Minimum Error Bounded Efficient L1 Tracker with Occlusion Detection. In CVPR, 2011.

[42] X. Mei, H. Ling, Y. Wu, E. Blasch, and L. Bai. Efficient Minimum Error Bounded Particle Resampling L1 Tracker with Occlusion Detection. TIP, 2013, in press.

[43] S. Oron, A. Bar-Hillel, D. Levi, and S. Avidan. Locally Orderless Tracking. In CVPR, 2012.

[44] P. P ´erez, C. Hue, J. Vermaak, and M. Gangnet. Color-Based Probabilistic Tracking. In ECCV, 2002.

[45] P. Phillips, H. Moon, S. Rizvi, and P. Rauss. The FERET Evaluation Methodology for Face-Recognition Algorithms. PAMI, 22(10): 1090–1 104, 2000.

[46] F. Porikli, O. Tuzel, and P. Meer. Covariance Tracking using Model Update based on Lie Algebra. In CVPR, 2006.

[47] D. Ross, J. Lim, R.-S. Lin, and M.-H. Yang. Incremental Learning for Robust Visual Tracking. IJCV, 77(1): 125–141, 2008.

[48] J. Santner, C. Leistner, A. Saffari, T. Pock, and H. Bischof. PROST: Parallel Robust Online Simple Tracking. In CVPR, 2010.

[49] L. Sevilla-Lara and E. Learned-Miller. Distribution Fields for Tracking. In CVPR, 2012.

[50] S. Stalder, H. Grabner, and L. van Gool. Beyond Semi-Supervised Tracking: Tracking Should Be as Simple as Detection, but not Simpler than Recognition. In ICCV Workshop, 2009.

[51] B. Stenger, T. Woodley, and R. Cipolla. Learning to Track with Multiple Observers. In CVPR, 2009.

[52] F. Tang, S. Brennan, Q. Zhao, and H. Tao. Co-Tracking Using SemiSupervised Support Vector Machines. In CVPR, 2007.

[53] O. Tuzel, F. Porikli, and P. Meer. Region Covariance: A Fast Descriptor for Detection and Classification. In ECCV, 2006.

[54] P. Viola and M. J. Jones. Robust Real-Time Face Detection. IJCV, 57(2): 137–154, 2004.

[55] D. Wang, H. Lu, and M.-H. Yang. Online Object Tracking with S parse Prototypes. TIP, 22(1):314–325, 2013.

[56] Y. Wu, J. Cheng, J. Wang, H. Lu, J. Wang, H. Ling, E. Blasch, and L. Bai. Real-time Probabilistic Covariance Tracking with Efficient

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65] Model Update. TIP, 21(5):2824–2837, 2012. Y. Wu, H. Ling, J. Yu, F. Li, X. Mei, and E. Cheng. Blurred Target Tracking by Blur-driven Tracker. In ICCV, 2011. Y. Wu, B. Shen, and H. Ling. Online Robust Image Alignment via Iterative Convex Optimization. In CVPR, 2012. M. Yang, Y. Wu, and G. Hua. Context-Aware Visual Tracking. PAMI, 31(7): 1195–1209, 2008. A. Yilmaz, O. Javed, and M. Shah. Object Tracking: A Survey. ACM Computing Surveys, 38(4): 1–45, 2006. J. H. Yoon, D. Y. Kim, and K.-J. Yoon. Visual Tracking via Adaptive Tracker Selection with Multiple Features. In ECCV, 2012. L. Yuan, A. Haizhou, T. Yamashita, L. Shihong, and M. Kawade. Tracking in Low Frame Rate Video: A Cascade Particle Filter with Discriminative Observers of Different Life Spans. PAMI, 30(10): 1728–1740, 2008. K. Zhang, L. Zhang, and M.-H. Yang. Real-time Compressive Tracking. In ECCV, 2012. T. Zhang, B. Ghanem, S. Liu, and N. Ahuja. Robust Visual Tracking via Multi-task Sparse Learning. In CVPR, 2012. W. Zhong, H. Lu, and M.-H. Yang. Robust Object Tracking via Sparsity-based Collaborative Model. In CVPR, 2012. 222444111866