cvpr cvpr2013 cvpr2013-303 cvpr2013-303-reference knowledge-graph by maker-knowledge-mining
Source: pdf
Author: Zhenglong Zhou, Zhe Wu, Ping Tan
Abstract: We present a method to capture both 3D shape and spatially varying reflectance with a multi-view photometric stereo technique that works for general isotropic materials. Our data capture setup is simple, which consists of only a digital camera and a handheld light source. From a single viewpoint, we use a set of photometric stereo images to identify surface points with the same distance to the camera. We collect this information from multiple viewpoints and combine it with structure-from-motion to obtain a precise reconstruction of the complete 3D shape. The spatially varying isotropic bidirectional reflectance distributionfunction (BRDF) is captured by simultaneously inferring a set of basis BRDFs and their mixing weights at each surface point. According to our experiments, the captured shapes are accurate to 0.3 millimeters. The captured reflectance has relative root-mean-square error (RMSE) of 9%.
[1] D. Aliaga and Y. Xu. Photogeometric structured light: A self-calibrating and multi-viewpoint framework for accurate 3d modeling. In Proc. of CVPR, 2008. 1 111444888866
[2] N. Alldrin and D. Kriegman. Toward reconstructing surfaceswith arbitrary isotropic reflectance : A stratified pho-
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12] tometric stereo approach. In Proc. of ICCV, 2007. 1, 2, 3 N. Alldrin, T. Zickler, and D. Kriegman. Photometric stereowith non-parametric and spatially-varying reflectance. In Proc. of CVPR, 2008. 2, 6 P. J. Besl and N. D. McKay. A method for registration of 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell., 14:239– 256, 1992. 5 M. Chandraker, J. Bai, and R. Ramamoorthi. A theory of differential photometric stereo for unknown brdfs. In Proc. of CVPR, 2011. 2 J. Davis, D. Nehab, R. Ramamoorthi, and S. Rusinkiewicz. Spacetime stereo: A unifying framework for depth from triangulation. IEEE Trans. Pattern Anal. Mach. Intell., 27(2), 2005. 1 Y. Dong, J. Wang, X. Tong, J. Snyder, Y. Lan, M. Ben-Ezra, and B. Guo. Manifold bootstrapping for SVBRDF capture. ACM Trans. Graph., 29(4), 2010. 2 Y. Furukawa and J. Ponce. Accurate, dense, and robust multiview stereopsis. IEEE Trans. Pattern Anal. Mach. Intell., 32: 1362–1376, 2010. 1 A. Ghosh, T. Chen, P. Peers, C. A. Wilson, and P. Debevec. Estimating specular roughness and anisotropy from second order spherical gradient illumination. Computer Graphics Forum, 28, 2009. 1, 2 D. B. Goldman, B. Curless, A. Hertzmann, and S. M. Seitz. Shape and spatially-varying brdfs from photometric stereo. In Proc. of ICCV, pages 341–348, 2005. 1, 2 R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge University Press, New York, NY, USA, 2 edition, 2003. 1 C. Hernandez, G. Vogiatzis, and R. Cipolla. Multiview pho-
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21] tometric stereo. IEEE Trans. Pattern Anal. Mach. Intell., 30:548–554, 2008. 1, 2, 6 M. Holroyd, J. Lawrence, G. Humphreys, and T. Zickler. A photometric approach for estimating normals and tangents. ACM Trans. Graph., 27, 2008. 2 M. Holroyd, J. Lawrence, and T. Zickler. A coaxial optical scanner for synchronous acquisition of 3d geometry and surface reflectance. ACM Trans. Graph., 2010. 1, 2 M. Kazhdan, M. Bolitho, and H. Hoppe. Poisson surface reconstruction. In Proc. of Eurographics Symposium on Geometry processing, pages 61–70, 2006. 4 J. Lawrence, A. Ben-Artzi, C. DeCoro, W. Matusik, H. Pfister, R. Ramamoorthi, and S. Rusinkiewicz. Inverse shade trees for non-parametric material representation and editing. ACM Trans. Graph., 25:735–745, July 2006. 1, 4, 5 H. Lensch, J. Kautz, M. Goesele, W. Heidrich, and H.-P. Seidel. Image-based reconstruction of spatial appearance and geometric detail. ACM Trans. Graph., 22:234–257, 2003. 1 M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade, and D. Fulk. The digital michelangelo project: 3d scanning of large statues. In Proc. of SIGGRAPH, pages 131–144, 2000. 1 M. Lhuillier and L. Quan. A quasi-dense approach to surface reconstruction from uncalibrated images. IEEE Trans. Pattern Anal. Mach. Intell., 27:418–433, 2005. 1, 3 W.-C. Ma, T. Hawkins, P. Peers, C.-F. Chabert, M. Weiss, and P. Debevec. Rapid acquisition of specular and diffuse normal maps from polarized spherical gradient illumination. In Proc. of EGSR, 2007. 2 W. Matusik, H. Pfister, M. Brand, and L. McMillan. A data-
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30] [3 1] driven reflectance model. ACM Trans. Graph., 22:759–769, 2003. 3 S. K. Nayar, G. Krishnan, M. D. Grossberg, and R. Raskar. Fast separation of direct and global components of a scene using high frequency illumination. ACM Trans. Graph., 25:935–944, 2006. 7 D. Nehab, S. Rusinkiewicz, J. Davis, and R. Ramamoorthi. Efficiently combining positions and normals for precise 3d geometry. ACM Trans. Graph., 24:536–543, 2005. 1, 4 R. Raskar, K.-H. Tan, R. Feris, J. Yu, and M. Turk. Nonphotorealistic camera: depth edge detection and stylized rendering using multi-flash imaging. ACM Trans. Graph., 23:679–688, August 2004. 3 P. Ren, J. Wang, J. Snyder, X. Tong, and B. Guo. Pocket reflectometry. ACM Trans. Graph, 30(4), 2011. 2 F. Romeiro and T. Zickler. Inferring reflectance under realworld illumination. Technical Report TR-10-10, Harvard School of Engineering and Applied Sciences, 2010. 5 S. Rusinkiewicz, O. Hall-Holt, and M. Levoy. Real-time 3d model acquisition. ACM Trans. Graph., 21, 2002. 1 Y. Sato, M. D. Wheeler, and K. Ikeuchi. Object shape and reflectance modeling from observation. In Proc. of SIGGRAPH, pages 379–387, 1997. 1 C. Schlick. An inexpensive BRDF model for physicallybased rendering. Computer Graphics Forum, 13(3):233– 246, 1994. 7 N. Snavely, S. M. Seitz, and R. Szeliski. Photo tourism: exploring photo collections in 3d. ACM Trans. Graph. , 25(3):835–846, 2006. 3 P. Tan, S. P. Mallick, L. Quan, D. Kriegman, and T. Zickler. Isotropy, reciprocity and the generalized bas-relief ambigu-
[32]
[33]
[34]
[35]
[36] ity. In Proc. of CVPR, 2007. 2 P. Tan, L. Quan, and T. Zickler. The geometry of reflectance symmetries. IEEE Trans. Pattern Anal. Mach. Intell., 33:2506–2520, 2011. 2 G. J. Ward. Measuring and modeling anisotropic reflection. In Proc. of SIGGRAPH, pages 265–272, 1992. 2 T.-P. Wu and C.-K. Tang. Visible surface reconstruction from normals with discontinuity consideration. In Proc. of CVPR, 2006. 6 L. Zhang, B. Curless, A. Hertzmann, and S. M. Seitz. Shape and motion under varying illumination: Unifying structure from motion, photometric stereo, and multi-view stereo. In Proc. of ICCV, 2003. 2 L. Zhang, N. Snavely, B. Curless, and S. M. Seitz. Spacetime faces: high resolution capture for modeling and animation. ACM Trans. Graph., 23:548–558, 2004. 1 111444888977