cvpr cvpr2013 cvpr2013-249 cvpr2013-249-reference knowledge-graph by maker-knowledge-mining

249 cvpr-2013-Learning Compact Binary Codes for Visual Tracking


Source: pdf

Author: Xi Li, Chunhua Shen, Anthony Dick, Anton van_den_Hengel

Abstract: A key problem in visual tracking is to represent the appearance of an object in a way that is robust to visual changes. To attain this robustness, increasingly complex models are used to capture appearance variations. However, such models can be difficult to maintain accurately and efficiently. In this paper, we propose a visual tracker in which objects are represented by compact and discriminative binary codes. This representation can be processed very efficiently, and is capable of effectively fusing information from multiple cues. An incremental discriminative learner is then used to construct an appearance model that optimally separates the object from its surrounds. Furthermore, we design a hypergraph propagation method to capture the contextual information on samples, which further improves the tracking accuracy. Experimental results on challenging videos demonstrate the effectiveness and robustness of the proposed tracker.


reference text

[1] A. Adam, E. Rivlin, and I. Shimshoni. Robust fragments-based tracking using the integral histogram. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., pages 798–805, 2006.

[2] B. Babenko, M. Yang, and S. Belongie. Visual tracking with online multiple instance learning. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., pages 983– 990, 2009.

[3] Y. Bai and M. Tang. Robust tracking via weakly supervised ranking svm. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., pages 1854–1861, 2012.

[4] A. Bosch, A. Zisserman, and X. Muoz. Image classification using random forests and ferns. In Proc. IEEE Int. Conf. Comp. Vis., pages 1–8, 2007.

[5] M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni. Locality-sensitive hashing scheme based on p-stable distributions. In Proc. ACM Ann. Symp. Comp. Geometry, pages 253–262, 2004.

[6] J. Fan, Y. Wu, and S. Dai. Discriminative spatial attention for robust tracking. In Proc. Eur. Conf. Comp. Vis., pages 480–493, 2010.

[7] Y. Fu, L. Cao, G. Guo, and T. Huang. Multiple feature fusion by subspace learning. In Proc. ACM Int. Conf. Content-based Image & Video Retrieval, pages 127–134, 2008.

[8] G. Golub and C. Van Loan. Matrix computations, volume 3. Johns Hopkins University Press, 1996.

[9] H. Grabner, M. Grabner, and H. Bischof. Real-time tracking via on-line boosting. In Proc. British Machine Vis. Conf., pages 47–56, 2006.

[10] M. Grabner, H. Grabner, and H. Bischof. Learning features for tracking. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., pages 1–8, 2007.

[11] S. Hare, A. Saffari, and P. Torr. Struck: Structured output tracking with kernels. In Proc. IEEE Int. Conf. Comp. Vis., 2011.

[12] A. S. Householder. The theory of matrices in numerical analysis. Blaisdell Publishing Co.: New York, 1964.

[13] Y. Huang, Q. Liu, S. Zhang, and D. Metaxas. Image retrieval via probabilistic hypergraph ranking. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., pages 3376–3383, 2010.

[14] A. Joly and O. Buisson. Random maximum margin hashing. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., pages 873–880, 2011.

[15] J. Kwon and K. M. Lee. Visual tracking decomposition. In Proc. IEEE Conf.

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32] Comp. Vis. Patt. Recogn., pages 1269–1276, 2010. H. Li, C. Shen, and Q. Shi. Real-time visual tracking with compressive sensing. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2011. X. Li, A. Dick, C. Shen, A. van den Hengel, and H. Wang. Incremental learning of 3d-dct compact representations for robust visual tracking. IEEE Trans. Pattern Anal. Mach. Intell., 2013. X. Li, W. Hu, Z. Zhang, X. Zhang, M. Zhu, and J. Cheng. Visual tracking via incremental log-euclidean riemannian subspace learning. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., pages 1–8, 2008. X. Li, C. Shen, Q. Shi, A. Dick, and A. van den Hengel. Non-sparse linear representations for visual tracking with online reservoir metric learning. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., pages 1760–1767, 2012. H. Lu, W. Zhang, and Y. Chen. On feature combination and multiple kernel learning for object tracking. Proc. Asian Conf. Comp. Vis., pages 5 11–522, 201 1. X. Mei and H. Ling. Robust visual tracking and vehicle classification via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell., 2011. F. Porikli, O. Tuzel, and P. Meer. Covariance tracking using model update based on lie algebra. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., volume 1, pages 728–735, 2006. M. J. D. Powell. A theorem on rank one modifications to a matrix and its inverse. Computer Journal, 12(3):288–290, 1969. D. A. Ross, J. Lim, R. Lin, and M. Yang. Incremental learning for robust visual tracking. Int. J. Comp. Vis., 77(1): 125–141, 2008. A. Saffari, C. Leistner, J. Santner, M. Godec, and H. Bischof. On-line random forests. In Proc. IEEE Int. Conf. Comp. Vis. Workshops, pages 1393–1400, 2009. C. Strecha, A. Bronstein, M. M. Bronstein, and P. Fua. LDAHash: Improved matching with smaller descriptors. IEEE Trans. Pattern Anal. Mach. Intell., 34(1):66–78, 2012. T. Van Gestel, J. Suykens, B. Baesens, S. Viaene, J. Vanthienen, G. Dedene, B. De Moor, and J. Vandewalle. Benchmarking least squares support vector machine classifiers. Machine Learn., 54(1):5–32, 2004. M. Varma and D. Ray. Learning the discriminative power-invariance trade-off. In Proc. IEEE Int. Conf. Comp. Vis., pages 1–8, 2007. J. Wang, S. Kumar, and S. Chang. Semi-supervised hashing for large scale search. IEEE Trans. Pattern Anal. Mach. Intell., 2012. Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In Proc. Adv. Neural Inf. Process. Syst., 2008. Y. Wu, J. Cheng, J. Wang, H. Lu, J. Wang, H. Ling, E. Blasch, and L. Bai. Real-time probabilistic covariance tracking with efficient model update. IEEE Trans. Image Proc., 21(5):2824–2837, 2012. J. Ye and T. Xiong. Svm versus least squares svm. In Proc. Int. Conf. Artificial Intelligence & Stat., pages 640–647, 2007.

[33] K. Zhang, L. Zhang, and M. Yang. Real-time compressive tracking. In Proc. Eur. Conf. Comp. Vis., 2012.

[34] T. Zhang, B. Ghanem, S. Liu, and N. Ahuja. Robust visual tracking via multitask sparse learning. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., pages 2042–2049, 2012.

[35] D. Zhou, J. Huang, and B. Scholkopf. Learning with hypergraphs: Clustering, classification, and embedding. In Proc. Adv. Neural Inf. Process. Syst. , volume 19, 2007. 222444222644