cvpr cvpr2013 cvpr2013-247 cvpr2013-247-reference knowledge-graph by maker-knowledge-mining

247 cvpr-2013-Learning Class-to-Image Distance with Object Matchings


Source: pdf

Author: Guang-Tong Zhou, Tian Lan, Weilong Yang, Greg Mori

Abstract: We conduct image classification by learning a class-toimage distance function that matches objects. The set of objects in training images for an image class are treated as a collage. When presented with a test image, the best matching between this collage of training image objects and those in the test image is found. We validate the efficacy of the proposed model on the PASCAL 07 and SUN 09 datasets, showing that our model is effective for object classification and scene classification tasks. State-of-the-art image classification results are obtained, and qualitative results demonstrate that objects can be accurately matched.


reference text

[1] A. C. Berg, T. L. Berg, and J. Malik. Shape matching and object recognition using low distortion correspondences. In CVPR, 2005. 1

[2] O. Boiman, E. Shechtman, and M. Irani. In defense of nearest-neighbor based image classification. In CVPR, 2008.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13] 2 Y. Chai, V. S. Lempitsky, and A. Zisserman. BiCoS: A bilevel co-segmentation method for image classification. In ICCV, 2011. 1 K. Chatfield, V. Lempitsky, A. Vedaldi, and A. Zisserman. The devil is in the details: an evaluation of recent feature encoding methods. In BMVC, 2011. 3, 5, 6 Q. Chen, Z. Song, Y. Hua, Z. Huang, and S. Yan. Hierarchical matching with side information for image classification. In CVPR, 2012. 6 M. J. Choi, J. J. Lim, A. Torralba, and A. S. Willsky. Exploiting hierarchical context on a large database of object categories. In CVPR, 2010. 1, 5 N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, 2005. 3, 5 C. Desai, D. Ramanan, and C. Fowlkes. Discriminative models for multi-class object layout. In ICCV, 2009. 3 T. M. T. Do and T. Arti e`res. Large margin training for hidden markov models with partially observed states. In ICML, 2009. 4 M. Everingham, L. V. Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The PASCAL visual object classes challenge 2007 (VOC2007) results. 1, 5 P. F. Felzenszwalb, D. A. McAllester, and D. Ramanan. A discriminatively trained, multiscale, deformable part model. In CVPR, 2008. 4 A. Frome, Y. Singer, and J. Malik. Image retrieval and classification using local distance functions. In NIPS, 2006. 2, 3 A. Frome, Y. Singer, F. Sha, and J. Malik. Learning globallyconsistent local distance functions for shape-based image re-

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24] trieval and classification. In ICCV, 2007. 2, 3 H. Harzallah, F. Jurie, and C. Schmid. Combining efficient object localization and image classification. In ICCV, 2009. 6 V. Kolmogorov. Convergent tree-reweighted message passing for energy minimization. T-PAMI, 28(10): 1568–1583, 2006. 4 T. Lan, W. Yang, Y. Wang, and G. Mori. Image retrieval with structured object queries using latent ranking svm. In ECCV, 2012. 2 S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In CVPR, 2006. 1 Y. J. Lee and K. Grauman. Object-graphs for context-aware category discovery. In CVPR, 2010. 2 C. Li, D. Parikh, and T. Chen. Automatic discovery ofgroups of objects for scene understanding. In CVPR, 2012. 1, 2 L.-J. Li, H. Su, E. P. Xing, and F.-F. Li. Object bank: A highlevel image representation for scene classification & semantic feature sparsification. In NIPS, 2010. 1, 2 J. Malik, S. Belongie, T. K. Leung, and J. Shi. Contour and texture analysis for image segmentation. IJCV, 43(1):7–27, 2001. 3, 5 T. Malisiewicz and A. A. Efros. Recognition by association via learning per-exemplar distances. In CVPR, 2008. 1, 2, 3 M. Marszalek, C. Schmid, H. Harzallah, and J. van de Weijer. Learning object representations for visual object class recognition. In Visual Recognition Challange, 2007. 5, 6 T. Ojala, M. Pietik¨ ainen, and T. Ma¨ enp a¨ a¨. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. T-PAMI, 24(7):971–987, 2002. 3, 5

[25] A. Oliva and A. Torralba. Modeling the shape of the scene: A holistic representation of the spatial envelope. IJCV, 42(3):145–175, 2001. 3, 5, 6

[26] F. Perronnin, J. S ´anchez, and T. Mensink. Improving the fisher kernel for large-scale image classification. In ECCV, 2010. 5

[27] A. Rabinovich, A. Vedaldi, C. Galleguillos, E. Wiewiora, and S. Belongie. Objects in context. In ICCV, 2007. 2, 5, 6

[28] B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman. LabelMe: A database and web-based tool for image annotation. IJCV, 77(1-3): 157–173, 2008. 2

[29] G. Wang and D. A. Forsyth. Joint learning of visual attributes, object classes and visual saliency. In ICCV, 2009. 2

[30] H. Wang, H. Huang, F. Kamangar, F. Nie, and C. H. Q. Ding. Maximum margin multi-instance learning. In NIPS, 2011. 2 [3 1] Y. Wang and G. Mori. A discriminative latent model of image region and object tag correspondence. In NIPS, 2010. 2

[32] Z. Wang, S. Gao, and L.-T. Chia. Learning class-to-image distance via large margin and l1-norm regularization. In ECCV, 2012. 2

[33] Z. Wang, Y. Hu, and L.-T. Chia. Image-to-class distance metric learning for image classification. In ECCV, 2010. 2

[34] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba. SUN database: Large-scale scene recognition from abbey to zoo. In CVPR, 2010. 5

[35] O. Yakhnenko, J. Verbeek, and C. Schmid. Region-based image classification with a latent svm model. Technical report, INRIA, 2011. 5, 6 8 8 80 0 02 0 0