cvpr cvpr2013 cvpr2013-210 cvpr2013-210-reference knowledge-graph by maker-knowledge-mining
Source: pdf
Author: Bing Li, Weihua Xiong, Weiming Hu, Houwen Peng
Abstract: Computational color constancy is a very important topic in computer vision and has attracted many researchers ’ attention. Recently, lots of research has shown the effects of using high level visual content cues for improving illumination estimation. However, nearly all the existing methods are essentially combinational strategies in which image ’s content analysis is only used to guide the combination or selection from a variety of individual illumination estimation methods. In this paper, we propose a novel bilayer sparse coding model for illumination estimation that considers image similarity in terms of both low level color distribution and high level image scene content simultaneously. For the purpose, the image ’s scene content information is integrated with its color distribution to obtain optimal illumination estimation model. The experimental results on real-world image sets show that our algorithm is superior to some prevailing illumination estimation methods, even better than some combinational methods.
[1] K. Barnard. Practical Colour Constancy. PhD thesis, Simon Fraser University, Canada, 1999.
[2] Fei-Fei Li. Bag-of-Words model. Tutorial. In CVPR, 2007.
[3] http://www.kyb.mpg.de/bs/people/pgehler/colour/.
[4] L. Shi, B. Funt. Re-processed Version of the Gehler Color Constancy Dataset of 568 Images. http://www.cs.sfu.ca/∼colour/data/.
[5] http://www.cvc.uab.es/color calibration/Database.html.
[6] http://www.colorconstancy.com.
[7] K. Barnard, V. Cardei, and B. Funt. A comparison of computational color constancy algorithms-part 1: Methodology and 11111444442222268866 Table 2. Comparison of performance on the Linear SFU image set. The performance of other algorithms is from [21] AlgorithmMeanMedianTrimeanBest-25%Worst-25% Do Nothing15.614.014.62.133.0 maxRGB GW general GW (e0,p,σ) 1st-order GE (e1,p,σ) 12.7 13.0 12.6 11.1 2nd-order GE (e2,p,σ) Gamut Mapping Edge-based Gamut Mapping Spatio-Spectral SVR HVI NIS 10.5 11.3 2.5 11.0 11.5 3.1 11.1 11.6 3.8 9.5 9.8 3.2 9.6 10.0 3.4 8.9 10.0 2.8 11.9 12.3 3.7 10.8 11.5 2.4 11.2 11.8 4.4 7.7 8.2 2.3 7.7 8.3 2.4 SSC10.88.59.12.422.8 BSC 9.2 7.3 7.8 2.1 19.6 11.2 11.8 13.7 12.7 13.1 9.7 9.9 26.2 26.0 23.9 21.7 21.7 24.9 26.9 26.0 25.0 20.6 20.8
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17] experiments with synthesized data. IEEE TIP, 11(9):972– 983, 2002. K. Barnard, L. Martin, A. Coath, and B. Funt. A comparison of computational color constancy algorithms-part 2: Experiments with image data. IEEE TIP, 11(9):985–996, 2002. K. Barnard, L. Martin, and B. Funt. Color by correlation in a three-dimensional color space. In Proc. of ECCV, pages 375–389, 2000. S. Bianco, G. Ciocca, C. Cusano, and R. Schettini. Improving color constancy using indoor-outdoor. IEEE TIP, 17(12):2381–2392, 2010. G. Buchsbaum. A spatial processor model for object colour perception. Journal of the Franklin Institute, 3 10(1):337– 350, 1980. V. Cardei, B. Funt, and K. Barnard. Estimating the scene illumination chromaticity using a neural network. JOSA A, 19(12):2374–2386, 2002. A. Chakrabarti, K. Hirakawa, and T. Zickler. Color constancy with spatio-spectral statistics. IEEE TPAMI, 34(8): 1509– 1519, 2012. F. Ciurea and B. Funt. A large image database for color constancy research. In Proc. of IS&T;/SID Color Imaging Conference, pages 160–164, 2003. Y. Deng and B. S. Manjunath. Unsupervised segmentation of color-texture regions in images and video. IEEE TPAMI, 23(8):800–810, 2001. M. Ebner. Color Constancy. John Wiley & Sons, 2006. G. Finlayson, S. Hordley, and P. Hubel. Color by correlation: A simple, unifying framework for color constancy. IEEE TPAMI, 22(1 1): 1209–1221, 2001.
[18] G. Finlayson and E. Trezzi. Shades of gray and color constancy. In Proc. of IS&T;/SID Color Imaging Conference, pages 37–41, 2004.
[19] P. V. Gehler, C. Rother, A. Blake, and T. Minka. Bayesian color constancy revisited. In Proc. of CVPR, pages 1–8, 2008.
[20] A. Gijsenij and T. Gevers. Color constancy using natural image statistics and scene semantics. IEEE TPAMI, 33(4):687– 698, 2011.
[21] A. Gijsenij, T. Gevers, and J. van de Weijer. Computational color constancy: Survey and experiments. IEEE TIP, 20(9):2475–2489, 2011.
[22] A. Gijsenij, T. Gevers, and J. V. Weijer. Generalized gamut mapping using image derivative structuresfor color constancy. IJCV, 86(2): 127–139, 2010.
[23] D. Gokalp and S. Aksoy. Scene classification using bag-ofregions representations. In Proc. of CVPR, pages 1–8, 2007.
[24] E. H. Land. The retinex theory of color vision. Scientific American, 237(6): 108–128, 1977.
[25] B. Li, W. Xiong, and W. Hu. Evaluating combinational color constancy methods on real-world images. In Proc. of CVPR, pages 1929–1936, 2011.
[26] D. G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 60(2):91–1 10, 2004.
[27] R. Lu, A. Gijsenij, and T. Gevers. Color constancy using 3d scene geometry. In Proc. of ICCV, pages 1749–1756, 2009.
[28] J. Vazquez-Corral, C. A. Parraga, M. Vanrell, and R. Baldrich. Color constancy algorithms: psychophysical evaluation on a new dataset. JIST, 55(3):31 105–31 109, 2009.
[29] J. V. Weijer, T. Gevers, and A. Gijsenij. Edge-based color constancy. IEEE TIP, 16(9):2207–2214, 2007.
[30] J. V. Weijer, C. Schmid, and J. Verbeek. Using high-level visual information for color constancy. In Proc. of ICCV, pages 1–8, 2007. [3 1] J. Wright, Y. Ma, J. Mairal, and G. Sapiro. Sparse representation for computer vision and pattern recognition. Proceedings of the IEEE, 98(6): 1031–1044, 2010.
[32] W. Xiong and B. Funt. Estimating illumination chromaticity via support vector regression. Journal of Imaging Science and Technology, 50(4):341–348, 2006.
[33] X. Yuan and S. Yan. Visual classification with multi-task joint sparse representation. In Proc. of CVPR, pages 3493– 3500, 2010. 11111444442222279977