cvpr cvpr2013 cvpr2013-208 cvpr2013-208-reference knowledge-graph by maker-knowledge-mining
Source: pdf
Author: Rui Shi, Wei Zeng, Zhengyu Su, Hanna Damasio, Zhonglin Lu, Yalin Wang, Shing-Tung Yau, Xianfeng Gu
Abstract: Automatic computation of surface correspondence via harmonic map is an active research field in computer vision, computer graphics and computational geometry. It may help document and understand physical and biological phenomena and also has broad applications in biometrics, medical imaging and motion capture. Although numerous studies have been devoted to harmonic map research, limited progress has been made to compute a diffeomorphic harmonic map on general topology surfaces with landmark constraints. This work conquer this problem by changing the Riemannian metric on the target surface to a hyperbolic metric, so that the harmonic mapping is guaranteed to be a diffeomorphism under landmark constraints. The computational algorithms are based on the Ricci flow method and the method is general and robust. We apply our algorithm to study constrained human brain surface registration problem. Experimental results demonstrate that, by changing the Riemannian metric, the registrations are always diffeomorphic, and achieve relative high performance when evaluated with some popular cortical surface registration evaluation standards.
[1] S. Angenent, S. Haker, A. Tannenbaum, and R. Kikinis. Conformal geometry and brain flattening. In Med. Image Comput. Comput.-Assist. Intervention, pages 271–278, 1999. 222555333755
[2] G. Auzias, O. Colliot, J. A. Glaunes, M. Perrot, J. F. Mangin, A. Trouve, and S. Baillet. Diffeomorphic brain registration
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10] under exhaustive sulcal constraints. IEEE Trans Med Imaging, 30(6): 1214–1227, Jun 2011. P. J. Besl and N. D. Mckay. A Method for Registration of 3D Shapes. IEEE Transactions on PatternAnalysis andMachine Intelligence, 14(2), Feb. 1992. D. M. Boyer, Y. Lipman, E. S. Clair, J. Puente, B. A. Patel, T. Funkhouser, J. Jernvall, , and I. Daubechies. Algorithms to automatically quantify the geometric similarity of anatomical surfaces. PNAS, 2011. A. M. Bronstein, M. M. Bronstein, and R. Kimmel. Generalized multidimensional scaling: a framework for isometryinvariant partial surface matching. Proc. Natl. Acad. Sci. U.S.A., 103(5): 1168–1 172, Jan 2006. M. M. Bronstein and A. M. Bronstein. Shape recognition with spectral distances. IEEE Trans Pattern Anal Mach Intell, 33(5): 1065–1071, May 2011. P. Dalal, L. Ju, M. McLaughlin, X. Zhou, H. Fujita, and S. Wang. 3D open-surface shape correspondence for statistical shape modeling: Identifying topologically consistent landmarks. In 12th IEEE International Conference on Computer Vision, pages 1857–1864. IEEE, 2009. C. Davatzikos, M. Vaillant, S. M. Resnick, J. L. Prince, S. Letovsky, and R. N. Bryan. A computerized approach for morphological analysis of the corpus callosum. J. Comput. Assist. Tomogr., 20(1):88–97, 1996. T. A. Davis. A column pre-ordering strategy for the unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw., 30(2): 165–195, 2004. S. Durrleman, X. Pennec, A. Trouve, P. M. Thompson, and N. Ayache. Inferring brain variability from diffeomorphic deformations of currents: An integrative approach. Medical
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19] Image Analysis, 12(5):626–637, Oct. 2008. B. Fischl, M. I. Sereno, and A. M. Dale. Cortical surfacebased analysis II: Inflation, flattening, and a surface-based coordinate system. NeuroImage, 9(2): 195 – 207, 1999. X. Gu, Y. Wang, T. F. Chan, P. M. Thompson, and S.-T. Yau. Genus zero surface conformal mapping and its application to brain surface mapping. IEEE Trans. Med. Imag., 23(8):949– 958, Aug. 2004. A. Joshi, D. Shattuck, P. Thompson, and R. Leahy. Surfaceconstrained volumetric brain registration using harmonic mappings. IEEE Trans. Med. Imag., 26(12): 1657–1669, Dec. 2007. S. C. Joshi and M. I. Miller. Landmark matching via large deformation diffeomorphisms. IEEE Trans Image Process, 9(8): 1357–1370, 2000. S. C. Joshi, M. I. Miller, and U. Grenander. On the geometry and shape of brain sub-manifolds. IEEE Trans. Patt. Anal. Mach. Intell., 11: 1317–1343, 1997. S. Kurtek, E. Klassen, J. C. Gore, Z. Ding, and A. Srivastava. Elastic Geodesic Paths in Shape Space of Parametrized Surfaces. IEEE Trans Pattern Anal Mach Intell, Nov 2011. N. Litke, M. Droske, M. Rumpf, and P. Schr o¨der. An image processing approach to surface matching. SGP ’05, 2005. H. Lombaert, L. Grady, J. Polimeni, and F. Cheriet. FOCUSR: Feature oriented correspondence using spectral regularization-a method for accurate surface matching. IEEE Trans Pattern Anal Mach Intell, 2012 (Epub). L. M. Lui, T. W. Wong, P. Thompson, T. Chan, X. Gu, and S. T. Yau. Shape-based diffeomorphic registration on hippocampal surfaces using Beltrami holomorphic flow. Med Image Comput Comput Assist Interv, 13:323–330, 2010.
[20] F. M ´emoli. Spectral Gromov-Wasserstein distances for shape matching. In Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th International Conference on, pages 256–263. IEEE, 2009.
[21] D. Pantazis, A. Joshi, J. Jiang, D. W. Shattuck, L. E. Bernstein, H. Damasio, and R. M. Leahy. Comparison of landmark-based and automatic methods for cortical surface registration. Neuroimage, 49(3):2479–2493, Feb 2010.
[22] R. M. Schoen and S.-T. Yau. Lectures on harmonic maps. International Press, 1997, Mathematics.
[23] J. Shi, P. M. Thompson, B. Gutman, and Y. Wang. Surface fluid registration of conformal representation: Application to detect disease burden and genetic influence on hippocampus. NeuroImage, 2013, In Press.
[24] P. M. Thompson and A. W. Toga. A surface-based technique for warping 3-dimensional images of the brain. IEEE Trans. Med. Imag., 15(4): 1–16, 1996.
[25] A. Trouv ´e and L. Younes. Metamorphoses through Lie group action. Found. Comp. Math., pages 173–198, 2005.
[26] Y. Wang, W. Dai, X. Gu, T. F. Chan, A. W. Toga, and P. M. Thompson. Studying brain morphology using Teichm¨ uller space theory. In ICCV, pages 2365–2372, 2009.
[27] Y. Wang, M. Gupta, S. Zhang, S. Wang, X. Gu, D. Samaras, and P. Huang. High resolution tracking of non-rigid motion of densely sampled 3d data using harmonic maps. Int. J. Comput. Vision, 76(3):283–300, 2008.
[28] Y. Wang, J. Shi, X. Yin, X. Gu, T. F. Chan, S. T. Yau, A. W. Toga, and P. M. Thompson. Brain surface conformal parameterization with the Ricci flow. IEEE Trans Med Imaging, 31(2):251–264, Feb 2012.
[29] B. T. Yeo, M. R. Sabuncu, T. Vercauteren, N. Ayache, B. Fis-
[30] [3 1]
[32]
[33] chl, and P. Golland. Spherical demons: fast diffeomorphic landmark-free surface registration. IEEE Trans Med Imaging, 29(3):650–668, Mar 2010. W. Zeng and X. Gu. Registration for 3d surfaces with large deformations using quasi-conformal curvature flow. CVPR 2011. W. Zeng, D. Samaras, and X. Gu. Ricci flow for 3d shape analysis. IEEE TPAMI., 32:662–677, 2010. D. Zhang and M. Hebert. Harmonic maps and their applications in surface matching. In Computer Vision and Pattern Recognition, 1999. IEEE Computer Society Conference on., volume 2, 1999. J. Zhong, D. Y. Phua, and A. Qiu. Quantitative evaluation of LDDMM, FreeSurfer, and CARET for cortical surface mapping. Neuroimage, 52(1): 13 1–141, Aug 2010. 222555333866