cvpr cvpr2013 cvpr2013-168 cvpr2013-168-reference knowledge-graph by maker-knowledge-mining
Source: pdf
Author: Raphael Sznitman, Carlos Becker, François Fleuret, Pascal Fua
Abstract: Cascade-style approaches to implementing ensemble classifiers can deliver significant speed-ups at test time. While highly effective, they remain challenging to tune and their overall performance depends on the availability of large validation sets to estimate rejection thresholds. These characteristics are often prohibitive and thus limit their applicability. We introduce an alternative approach to speeding-up classifier evaluation which overcomes these limitations. It involves maintaining a probability estimate of the class label at each intermediary response and stopping when the corresponding uncertainty becomes small enough. As a result, the evaluation terminates early based on the sequence of responses observed. Furthermore, it does so independently of the type of ensemble classifier used or the way it was trained. We show through extensive experimentation that our method provides 2 to 10 fold speed-ups, over existing state-of-the-art methods, at almost no loss in accuracy on a number of object classification tasks.
[1] S. Agarwal, A. Awan, and D. Roth. Learning to Detect Objects in Images via a Sparse, Part-Based Representation.
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15] PAMI, 26(1 1): 1475–1490, 2004. 6 K. Ali, F. Fleuret, D. Hasler, and P. Fua. A Real-Time Deformable Detector. PAMI, 34(2):225–239, 2012. 1, 5 A. Bosch, A. Zisserman, and X. Munoz. Image Classification Using Random Forests and Ferns. In ICCV, 2007. 1 L. Bourdev and J. Brandt. Robust Object Detection via Soft Cascade. In CVPR, pages 236–243, 2005. 1, 2, 3, 5 L. Breiman. Random Forests. Machine Learning, 2001 . 1, 2 R. Caruana and A. Niculescu-Mizil. An Empirical Comparison of Supervised Learning Algorithms. In ICML, 2006. 1 T. M. Cover and J. Thomas. Elements of Information Theory. Wiley Interscience Press, 1991 . 4 P. Doll a´r, R. Appel, and W. Kienzle. Crosstalk Cascades for Frame-Rate Pedestrian Detection. In ECCV, 2012. 1, 2 Y. Freund and R. Schapire. A Short Introduction to Boosting, 1999. Journal of Japanese Society for Artificial Intelligence, 14(5):771-780. 1, 2 J. Gall, A. Yao, N. Razavi, L. V. Gool, and V. Lempitsky. Hough Forests for Object Detection, Tracking, and Action Recognition. PAMI, 2011. 1 P. Gehler and S. Nowozin. On Feature Combination for Multiclass Object Classification. In CVPR, 2009. 6 G. Griffin, A. Holub, and P. Perona. Caltech-256 Object Category Dataset. Technical report, California Institute of Technology, 2007. 6 T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer, 2001 . 2 J. Liu, J. Luo, and M. Shah. Recognizing Realistic Actions from Videos in the Wild. In CVPR, 2009. 1 H. Luo. Optimization Design of Cascaded Classifiers. In CVPR, 2005. 2
[16] P. Minh-Tri, V.-D. Hoang, and C. Tat-Jen. Detection with multi-exit asymmetric boosting. In CVPR, 2008. 2
[17] F. Moosmann, E. Nowak, and F. Jurie. Randomized clustering forests for image classification. PAMI, 30(9): 1632 1646, 2008. 2
[18] S. Paisitkriangkrai, C. Shen, and A. Henge. Sharing Features in Multi-Class Boosting via Group Sparsity. In CVPR, 2012. 1
[19] H. A. Rowley, S. Baluja, and T. Kanade. Rotation Invariant Neural Network-Based Face Detection. JMLR, page 963, 1998. 5
[20] M. J. Saberian and N. Vasconcelos. Learning optimal embedded cascades. PAMI, 34:2005–2018, 2012. 2
[21] A. Saffari, C. Leistner, J. Santner, M. Godec, and H. Bischof. On-line random forests. In CVPR, 2009. 1
[22] D. W. Scott. Multivariate Density Estimation: Theory, Practice and Visualization. John Wiley and Sons, 1992. 4
[23] J. ˇSochman and J. Matas. Waldboost - Learning for Time Constrained Sequential Detection. In CVPR, pages 150–157, 2005. 1, 2, 3, 4, 5
[24] R. Sznitman and B. Jedynak. Active Testing for Face Detection and Localization. PAMI, 32(10): 1914–1920, 2010. 2
[25] E. Turetken, F. Benmansour, and P. Fua. Automated Reconstruction ofTree Structures Using Path Classifiers and Mixed Integer Programming. In CVPR, 2012. 7
[26] P. Viola and M. Jones. Robust Real-Time Face Detection. IJCV, 57(2): 137–154, 2004. 1, 2
[27] P. Wang, J. Wang, G. Zeng, J. Feng, H. Zha, and S. Li. Salient Object Detection for Searched Web Images via Global Saliency. In CVPR, pages 3194–3201, 2012. 1 –
[28] B. Zeisl, C. Leistner, A. Saffari, and H. Bischof. On-Line Semi-Supervised Multiple-Instance Boosting. In CVPR, pages 1879–1888, 2010. 2
[29] C. Zhang and P. A. Viola. Multiple-Instance Pruning for Learning Efficient Cascade Detectors. In NIPS, 2007. 1, 2, 3, 5
[30] D. Zikic, B. Glocker, E. Konukoglu, J. Shotton, A. Criminisi, D. Ye, C. Demiralp, O. Thomas, T. Das, R. Jena, and S. Price. Context-Sensitive Classification Forests for Segmentation of Brain Tumor Tissues. In MICCAI, 2012. 1 333222777755