cvpr cvpr2013 cvpr2013-143 cvpr2013-143-reference knowledge-graph by maker-knowledge-mining

143 cvpr-2013-Efficient Large-Scale Structured Learning


Source: pdf

Author: Steve Branson, Oscar Beijbom, Serge Belongie

Abstract: unkown-abstract


reference text

[1] D. Batra, P. Yadollahpour, A. Guzman-Rivera, and G. Shakhnarovich. Diverse m-best solutions in markov random fields. In ECCV. 2012.

[2] M. Blaschko and C. Lampert. Learning to localize objects with structured output regression. ECCV, 2008.

[3] L. Bourdev and J. Malik. Poselets: Body part detectors using 3d human pose annotations. In ICCV, 2010.

[4] S. Branson, P. Perona, and S. Belongie. Strong supervision from weak annotation. In ICCV, 2011.

[5] L. Cai and T. Hofmann. Hierarchical document categorization with support vector machines. In CIKM, 2004.

[6] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer. Online passive-aggressive algs. JMLR, 2006.

[7] N. Dalal and B. Triggs. Hog for detection. In CVPR, 2005.

[8] J. Deng, A. C. Berg, K. Li, and L. Fei-Fei. What does classifying more than 10,000 categories? In ECCV, 2010.

[9] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale database. In CVPR, 2009.

[10] C. Desai, D. Ramanan, and C. Fowlkes. Discriminative models for multi-class object layout. In ICCV, 2009.

[11] R. Fan, K. Chang, C. Hsieh, X. Wang, and C. Lin. LIBLINEAR: A library for large linear. JMLR, 2008.

[12] P. Felzenszwalb, D. McAllester, and D. Ramanan. A discriminatively trained, multiscale, DPM. In CVPR, 2008.

[13] A. Guzman-Rivera, P. Kohli, and D. Batra. Faster training of structural svms with diverse m-best cutting-planes. 2013.

[14] T. Joachims. Training linear SVMs in linear time. In SIGKD, 2006.

[15] S. Kakade and S. Shalev-Shwartz. Mind the duality gap: Logarithmic regret algorithms. NIPS, 2008.

[16] S. Keerthi, S. Sundararajan, K. Chang, C. Hsieh, and C. Lin. A sequential dual method for svms. In SIGKDD, 2008.

[17] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching. In CVPR, 2006.

[18] D. Park and D. Ramanan. N-best maximal decoders for part models. In ICCV, 2011.

[19] N. Ratliff. (Online) Subgradient Methods for Structured Prediction. In AI, 2007.

[20] B. Sapp, C. Jordan, and B. Taskar. Adaptive pose priors for pictorial structures. In CVPR, 2010.

[21] S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal estimated sub-gradient. In ICML, 2007.

[22] S. Shalev-Shwartz and T. Zhang. Stochastic Dual Coordinate Ascent Methods. JMLR, 2013.

[23] B. Taskar, C. Guestrin, and D. Koller. Max-margin markov networks. In NIPS, volume 16, page 25. MIT Press, 2004.

[24] B. Taskar, S. Lacoste-Julien, and M. Jordan. Structured prediction via the extragradient method. 2005.

[25] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for structured output. JMLR, 2006.

[26] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The Caltech-UCSD Birds-200-201 1 Dataset. Technical Report CNS-TR-201 1-001, Caltech, 2011.

[27] Y. Yang and D. Ramanan. Articulated Pose Estimation using Flexible Mixtures of Parts. In CVPR, 2011. 111888 111311