cvpr cvpr2013 cvpr2013-29 cvpr2013-29-reference knowledge-graph by maker-knowledge-mining
Source: pdf
Author: Jason Chang, Donglai Wei, John W. Fisher_III
Abstract: We develop a generative probabilistic model for temporally consistent superpixels in video sequences. In contrast to supervoxel methods, object parts in different frames are tracked by the same temporal superpixel. We explicitly model flow between frames with a bilateral Gaussian process and use this information to propagate superpixels in an online fashion. We consider four novel metrics to quantify performance of a temporal superpixel representation and demonstrate superior performance when compared to supervoxel methods.
[1] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk. Slic superpixels compared to state-of-the-art superpixel methods. PAMI, 2012. 2, 3
[2] S. Baker, D. Scharstein, J. Lewis, S. Roth, M. J. Black, and R. Szeliski. A database and evaluation methodology for optical flow. ICCV, 2007. 7
[3] G. Bertrand. Simple points, topological numbers and geodesic neighborhoods in cubic grids. Pattern Recogn. Lett., 1994. 3
[4] T. Brox and J. Malik. Object segmentation by long term analysis of point trajectories. ECCV, 2010. 1
[5] T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI, 2011. 1
[6] V. Chalana and Y. Kim. A methodology for evaluation of boundary detection algorithms on medical emages. IEEE Trans. on Medical Imaging, 1997. 6
[7] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient graphbased image segmentation. IJCV, 2004. 1, 2
[8] M. Grundmann, V. Kwatra, M. Han, and I. Essa. Efficient hierarchical graph based video segmentation. CVPR, 2010.
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20] 1, 2, 7 X. Han, C. Xu, and J. L. Prince. A topology preserving level set method for geometric deformable models. PAMI, 2003. 3 B. K. P. Horn and B. G. Schunck. Determining optical flow. Artificial Intelligence, 1981. 1, 4 A. Levinshtein, A. Stere, K. N. Kutulakos, D. J. Fleet, S. J. Dickinson, and K. Siddiqi. Turbopixels: Fast superpixels using geometric flows. PAMI, 2009. 2 C. Liu, W. T. Freeman, E. H. Adelson, and Y. Weiss. Humanassisted motion annotation. CVPR, 2008. 5, 7 B. D. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision. Int. Joint Conference on AI, 1981. 1 D. R. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. ICCV, 2001. 2, 4 G. Mori, X. Ren, A. A. Efros, and J. Malik. Recovering human body configurations: combining segmentation and recognition. CVPR, 2004. 2 P. Ochs and T. Brox. Object segmentation in video: a hierarchical variational approach for turning point trajectories into dense regions. ICCV, 2011. 1 C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. The MIT Press, 2006. 4, 5 X. Ren and J. Malik. Learning a classification model for segmentation. CVPR, 2003. 1, 2 P. Sand and S. Teller. Particle video: Long-range motion estimation using point trajectories. CVPR, 2006. 1 E. Sharon, A. Brandt, and R. Basri. Fast multiscale image
[21]
[22]
[23]
[24]
[25]
[26]
[27] segmentation. CVPR, 2000. 7 C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images. ICCV, 1998. 5 D. Tsai, M. Flagg, and J. M.Rehg. Motion coherent tracking with multi-label mrf optimization. BMVC, 2010. 7 A. Vazquez-Reina, S. Avidan, H. Pfister, and E. Miller. Multiple hypothesis video segmentation from superpixel flows. ECCV, 2010. 2 C. Xu and J. Corso. Evaluation of super-voxel methods for early video processing. CVPR, 2012. 1, 2, 6, 7 C. Xu, C. Xiong, and J. J. Corso. Streaming hierarchical video segmentation. ECCV, 2012. 2, 6, 7 R. Zabih and V. Kolmogorov. Spatially coherent clustering using graph cuts. CVPR, 2004. 2 C. Zitnick, N. Jojic, and S. B. Kang. Consistent segmentation for optical flow estimation. ICCV, 2005. 2 222000555866