acl acl2012 acl2012-181 acl2012-181-reference knowledge-graph by maker-knowledge-mining

181 acl-2012-Spectral Learning of Latent-Variable PCFGs


Source: pdf

Author: Shay B. Cohen ; Karl Stratos ; Michael Collins ; Dean P. Foster ; Lyle Ungar

Abstract: We introduce a spectral learning algorithm for latent-variable PCFGs (Petrov et al., 2006). Under a separability (singular value) condition, we prove that the method provides consistent parameter estimates.


reference text

B. Balle, A. Quattoni, and X. Carreras. 2011. A spectral learning algorithm for finite state transducers. In Proceedings of ECML. S. Dasgupta. 1999. Learning mixtures of Gaussians. In Proceedings of FOCS. Dean P. Foster, Jordan Rodu, and Lyle H. Ungar. 2012. Spectral dimensionality reduction for hmms. arXiv: 1203.6130v1. J. Goodman. 1996. Parsing algorithms and metrics. In Proceedings of the 34th annual meeting on Association for Computational Linguistics, pages 177–183. Association for Computational Linguistics. D. Hsu, S. M. Kakade, and T. Zhang. 2009. A spectral algorithm for learning hidden Markov models. In Proceedings of COLT. H. Jaeger. 2000. Observable operator models for discrete stochastic time series. Neural Computation, 12(6). F. M. Lugue, A. Quattoni, B. Balle, and X. Carreras. 2012. Spectral learning for non-deterministic dependency parsing. In Proceedings of EACL. T. Matsuzaki, Y. Miyao, and J. Tsujii. 2005. Probabilistic CFG with latent annotations. In Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics, pages 75–82. Association for Computational Linguistics. A. Parikh, L. Song, and E. P. Xing. 2011. A spectral algorithm for latent tree graphical models. In Proceedings of The 28th International Conference on Machine Learningy (ICML 2011). F. Pereira and Y. Schabes. 1992. Inside-outside reestimation from partially bracketed corpora. In Proceedings of the 30th Annual Meeting of the Association for Computational Linguistics, pages 128–135, Newark, Delaware, USA, June. Association for Computational Linguistics. 231 S. Petrov, L. Barrett, R. Thibaux, and D. Klein. 2006. Learning accurate, compact, and interpretable tree annotation. In Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics, pages 433–440, Sydney, Australia, July. Association for Computational Linguistics. S. A. Terwijn. 2002. On the learnability of hidden markov models. In Grammatical Inference: Algorithms and Applications (Amsterdam, 2002), volume 2484 of Lecture Notes in Artificial Intelligence, pages 261–268, Berlin. Springer. S. Vempala and G. Wang. 2004. A spectral algorithm for learning mixtures of distributions. Journal of Computer and System Sciences, 68(4):841–860.