acl acl2011 acl2011-342 acl2011-342-reference knowledge-graph by maker-knowledge-mining

342 acl-2011-full-for-print


Source: pdf

Author: Kuzman Ganchev

Abstract: unkown-abstract


reference text

K. Bellare, G. Druck, and A. McCallum. Alternating projections for learning with expectation constraints. In Proc. UAI, 2009. Kedar Bellare and Andrew McCallum. Generalized expectation criteria for bootstrapping extractors using record-text alignment. In EMNLP, pages 131–140, 2009. Andrew Carlson, Justin Betteridge, Richard C. Wang, Estevam R. Hruschka Jr. , and Tom M. Mitchell. Coupled Semi-Supervised Learning for Information Extraction. In Proceedings of the Third A CM International Conference on Web Search and Data Mining (WSDM), 2010. M. Chang, L. Ratinov, and D. Roth. Guiding semi-supervision with constraintdriven learning. In Proc. A CL, 2007. Ming-Wei Chang, Lev Ratinov, and Dan Roth. Structured learning with constrained conditional models. 2010. In submission. M.W. Chang, L. Ratinov, N. Rizzolo, and D. Roth. Learning and inference with constraints. In Proceedings of the National Conference on Artificial Intelligence (AAAI). AAAI, 2008. G. Druck, G. Mann, and A. McCallum. Learning from labeled features using generalized expectation criteria. In Proc. SIGIR, 2008. G. Druck, G. Mann, and A. McCallum. Semi-supervised learning of dependency parsers using generalized expectation criteria. In Proc. A CL-IJCNLP, 2009a. Gregory Druck and Andrew McCallum. High-performance semi-supervised learning using discriminatively constrained generative models. In Proceedings of the International Conference on Machine Learning (ICML 2010), pages 319–326, 2010. Gregory Druck, Burr Settles, and Andrew McCallum. Active learning by labeling features. In EMNLP, pages 81–90, 2009b. K. Ganchev, J. Gra c¸a, J. Blitzer, and B. Taskar. Multi-view structured and non-identical outputs. In Proc. UAI, 2008. learning over K. Ganchev, J. Gillenwater, and B. Taskar. Dependency grammar induction via bitext projection constraints. In Proc. ACL-IJCNLP, 2009. Kuzman Ganchev, Joo Graa, Jennifer Gillenwater, and Ben Taskar. Posterior sparsity in unsupervised dependency parsing. Journal of Machine Learning Research, 11:2001–2049, July 2010. URL http ://jmlr .csail .mit .edu/ papers/v1 1/ganchev10a .html. Jennifer Gillenwater, Kuzman Ganchev, Joo Graa, Ben Taskar, and Fernando Pereira. Sparsity in grammar induction. In NIPS Workshop on Grammar Induction, Representation of Language and Language Learning, 2009. Jennifer Gillenwater, Kuzman Ganchev, Joo Graa, Fernando Pereira, and Ben Taskar. Posterior sparsity in unsupervised dependency parsing. Journal of Machine Learning Research, 12:455–490, February 2011. URL http : //jmlr csail .mit .edu/papers/v12/gillenwater1 1a. .html. . Joao Graca, Kuzman Ganchev, and Ben Taskar. Expectation maximization and posterior constraints. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20, pages 569– 576. MIT Press, Cambridge, MA, 2008. J. Gra c¸a, K. Ganchev, F. Pereira, and B. Taskar. Parameter vs. posterior sparisty in latent variable models. In Proc. NIPS, 2009a. J. Gra c¸a, K. Ganchev, and B. Taskar. Postcat - posterior constrained alignment toolkit. In The Third Machine Translation Marathon, 2009b. Rahul Gupta and Sunita Sarawagi. Joint training for open-domain extraction on the web: exploiting overlap when supervision is limited. In Proceedings of the Fourth ACM International Conference on Web Search and Data Mining (WSDM), 2011. P. Liang, M. I. Jordan, and D. Klein. Learning from measurements in exponential families. In Proc. ICML, 2009. G. S. Mann and A. McCallum. Simple, robust, scalable semi-supervised learning via expectation regularization. In Proc. ICML, 2007. G. S. Mann and A. McCallum. Generalized expectation criteria for semisupervised learning of conditional random fields. In Proc. ACL, 2008. Tahira Naseem, Harr Chen, Regina Barzilay, and Mark Johnson. Using universal linguistic knowledge to guide grammar induction. In Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, pages 1234–1244, Cambridge, MA, October 2010. Association for Computational Linguistics. URL http ://www .aclweb . org/anthology/D10- 1120. John Platt, Kristina Toutanova, and Wen-tau Yih. Translingual document representations from discriminative projections. In Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, pages 251–261 , Cambridge, MA, October 2010. Association for Computational Linguistics. URL http ://www aclweb org/anthology/D10- 1025. . . Novi Quadrianto, James Petterson, and Alex Smola. Distribution matching for transduction. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances in Neural Information Processing Systems 22, pages 1500–1508. MIT Press, 2009. Sameer Singh, Dustin Hillard, and Chris Leggetter. Minimally-supervised extraction of entities from text advertisements. In Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, pages 73–81, Los Angeles, California, June 2010. Association for Computational Linguistics. URL http ://www .aclweb .org/anthology/N10- 1009.